Metamath Proof Explorer


Theorem grplactcnv

Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grplact.1
|- F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
grplact.2
|- X = ( Base ` G )
grplact.3
|- .+ = ( +g ` G )
grplactcnv.4
|- I = ( invg ` G )
Assertion grplactcnv
|- ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) )

Proof

Step Hyp Ref Expression
1 grplact.1
 |-  F = ( g e. X |-> ( a e. X |-> ( g .+ a ) ) )
2 grplact.2
 |-  X = ( Base ` G )
3 grplact.3
 |-  .+ = ( +g ` G )
4 grplactcnv.4
 |-  I = ( invg ` G )
5 eqid
 |-  ( a e. X |-> ( A .+ a ) ) = ( a e. X |-> ( A .+ a ) )
6 2 3 grpcl
 |-  ( ( G e. Grp /\ A e. X /\ a e. X ) -> ( A .+ a ) e. X )
7 6 3expa
 |-  ( ( ( G e. Grp /\ A e. X ) /\ a e. X ) -> ( A .+ a ) e. X )
8 2 4 grpinvcl
 |-  ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X )
9 2 3 grpcl
 |-  ( ( G e. Grp /\ ( I ` A ) e. X /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X )
10 9 3expa
 |-  ( ( ( G e. Grp /\ ( I ` A ) e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X )
11 8 10 syldanl
 |-  ( ( ( G e. Grp /\ A e. X ) /\ b e. X ) -> ( ( I ` A ) .+ b ) e. X )
12 eqcom
 |-  ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = a )
13 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
14 2 3 13 4 grplinv
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) )
15 14 adantr
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( I ` A ) .+ A ) = ( 0g ` G ) )
16 15 oveq1d
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( 0g ` G ) .+ a ) )
17 simpll
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> G e. Grp )
18 8 adantr
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( I ` A ) e. X )
19 simplr
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> A e. X )
20 simprl
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a e. X )
21 2 3 grpass
 |-  ( ( G e. Grp /\ ( ( I ` A ) e. X /\ A e. X /\ a e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) )
22 17 18 19 20 21 syl13anc
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ A ) .+ a ) = ( ( I ` A ) .+ ( A .+ a ) ) )
23 2 3 13 grplid
 |-  ( ( G e. Grp /\ a e. X ) -> ( ( 0g ` G ) .+ a ) = a )
24 23 ad2ant2r
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( 0g ` G ) .+ a ) = a )
25 16 22 24 3eqtr3rd
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> a = ( ( I ` A ) .+ ( A .+ a ) ) )
26 25 eqeq2d
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = a <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) )
27 12 26 syl5bb
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) ) )
28 simprr
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> b e. X )
29 7 adantrr
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( A .+ a ) e. X )
30 2 3 grplcan
 |-  ( ( G e. Grp /\ ( b e. X /\ ( A .+ a ) e. X /\ ( I ` A ) e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) )
31 17 28 29 18 30 syl13anc
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( I ` A ) .+ b ) = ( ( I ` A ) .+ ( A .+ a ) ) <-> b = ( A .+ a ) ) )
32 27 31 bitrd
 |-  ( ( ( G e. Grp /\ A e. X ) /\ ( a e. X /\ b e. X ) ) -> ( a = ( ( I ` A ) .+ b ) <-> b = ( A .+ a ) ) )
33 5 7 11 32 f1ocnv2d
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) )
34 1 2 grplactfval
 |-  ( A e. X -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) )
35 34 adantl
 |-  ( ( G e. Grp /\ A e. X ) -> ( F ` A ) = ( a e. X |-> ( A .+ a ) ) )
36 f1oeq1
 |-  ( ( F ` A ) = ( a e. X |-> ( A .+ a ) ) -> ( ( F ` A ) : X -1-1-onto-> X <-> ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X ) )
37 35 36 syl
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X <-> ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X ) )
38 35 cnveqd
 |-  ( ( G e. Grp /\ A e. X ) -> `' ( F ` A ) = `' ( a e. X |-> ( A .+ a ) ) )
39 1 2 grplactfval
 |-  ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( a e. X |-> ( ( I ` A ) .+ a ) ) )
40 oveq2
 |-  ( a = b -> ( ( I ` A ) .+ a ) = ( ( I ` A ) .+ b ) )
41 40 cbvmptv
 |-  ( a e. X |-> ( ( I ` A ) .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) )
42 39 41 eqtrdi
 |-  ( ( I ` A ) e. X -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) )
43 8 42 syl
 |-  ( ( G e. Grp /\ A e. X ) -> ( F ` ( I ` A ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) )
44 38 43 eqeq12d
 |-  ( ( G e. Grp /\ A e. X ) -> ( `' ( F ` A ) = ( F ` ( I ` A ) ) <-> `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) )
45 37 44 anbi12d
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) <-> ( ( a e. X |-> ( A .+ a ) ) : X -1-1-onto-> X /\ `' ( a e. X |-> ( A .+ a ) ) = ( b e. X |-> ( ( I ` A ) .+ b ) ) ) ) )
46 33 45 mpbird
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( F ` A ) : X -1-1-onto-> X /\ `' ( F ` A ) = ( F ` ( I ` A ) ) ) )