Metamath Proof Explorer


Theorem eqgid

Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x X=BaseG
eqger.r ˙=G~QGY
eqgid.3 0˙=0G
Assertion eqgid YSubGrpG0˙˙=Y

Proof

Step Hyp Ref Expression
1 eqger.x X=BaseG
2 eqger.r ˙=G~QGY
3 eqgid.3 0˙=0G
4 2 releqg Rel˙
5 relelec Rel˙x0˙˙0˙˙x
6 4 5 ax-mp x0˙˙0˙˙x
7 subgrcl YSubGrpGGGrp
8 7 adantr YSubGrpGxXGGrp
9 eqid invgG=invgG
10 3 9 grpinvid GGrpinvgG0˙=0˙
11 8 10 syl YSubGrpGxXinvgG0˙=0˙
12 11 oveq1d YSubGrpGxXinvgG0˙+Gx=0˙+Gx
13 eqid +G=+G
14 1 13 3 grplid GGrpxX0˙+Gx=x
15 7 14 sylan YSubGrpGxX0˙+Gx=x
16 12 15 eqtrd YSubGrpGxXinvgG0˙+Gx=x
17 16 eleq1d YSubGrpGxXinvgG0˙+GxYxY
18 17 pm5.32da YSubGrpGxXinvgG0˙+GxYxXxY
19 1 subgss YSubGrpGYX
20 1 3 grpidcl GGrp0˙X
21 7 20 syl YSubGrpG0˙X
22 1 9 13 2 eqgval GGrpYX0˙˙x0˙XxXinvgG0˙+GxY
23 3anass 0˙XxXinvgG0˙+GxY0˙XxXinvgG0˙+GxY
24 22 23 bitrdi GGrpYX0˙˙x0˙XxXinvgG0˙+GxY
25 24 baibd GGrpYX0˙X0˙˙xxXinvgG0˙+GxY
26 7 19 21 25 syl21anc YSubGrpG0˙˙xxXinvgG0˙+GxY
27 19 sseld YSubGrpGxYxX
28 27 pm4.71rd YSubGrpGxYxXxY
29 18 26 28 3bitr4d YSubGrpG0˙˙xxY
30 6 29 bitrid YSubGrpGx0˙˙xY
31 30 eqrdv YSubGrpG0˙˙=Y