Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqger.x | |
|
eqger.r | |
||
eqgid.3 | |
||
Assertion | eqgid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqger.x | |
|
2 | eqger.r | |
|
3 | eqgid.3 | |
|
4 | 2 | releqg | |
5 | relelec | |
|
6 | 4 5 | ax-mp | |
7 | subgrcl | |
|
8 | 7 | adantr | |
9 | eqid | |
|
10 | 3 9 | grpinvid | |
11 | 8 10 | syl | |
12 | 11 | oveq1d | |
13 | eqid | |
|
14 | 1 13 3 | grplid | |
15 | 7 14 | sylan | |
16 | 12 15 | eqtrd | |
17 | 16 | eleq1d | |
18 | 17 | pm5.32da | |
19 | 1 | subgss | |
20 | 1 3 | grpidcl | |
21 | 7 20 | syl | |
22 | 1 9 13 2 | eqgval | |
23 | 3anass | |
|
24 | 22 23 | bitrdi | |
25 | 24 | baibd | |
26 | 7 19 21 25 | syl21anc | |
27 | 19 | sseld | |
28 | 27 | pm4.71rd | |
29 | 18 26 28 | 3bitr4d | |
30 | 6 29 | bitrid | |
31 | 30 | eqrdv | |