Metamath Proof Explorer


Theorem eqgid

Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x
|- X = ( Base ` G )
eqger.r
|- .~ = ( G ~QG Y )
eqgid.3
|- .0. = ( 0g ` G )
Assertion eqgid
|- ( Y e. ( SubGrp ` G ) -> [ .0. ] .~ = Y )

Proof

Step Hyp Ref Expression
1 eqger.x
 |-  X = ( Base ` G )
2 eqger.r
 |-  .~ = ( G ~QG Y )
3 eqgid.3
 |-  .0. = ( 0g ` G )
4 2 releqg
 |-  Rel .~
5 relelec
 |-  ( Rel .~ -> ( x e. [ .0. ] .~ <-> .0. .~ x ) )
6 4 5 ax-mp
 |-  ( x e. [ .0. ] .~ <-> .0. .~ x )
7 subgrcl
 |-  ( Y e. ( SubGrp ` G ) -> G e. Grp )
8 7 adantr
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> G e. Grp )
9 eqid
 |-  ( invg ` G ) = ( invg ` G )
10 3 9 grpinvid
 |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. )
11 8 10 syl
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( invg ` G ) ` .0. ) = .0. )
12 11 oveq1d
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = ( .0. ( +g ` G ) x ) )
13 eqid
 |-  ( +g ` G ) = ( +g ` G )
14 1 13 3 grplid
 |-  ( ( G e. Grp /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x )
15 7 14 sylan
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x )
16 12 15 eqtrd
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = x )
17 16 eleq1d
 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y <-> x e. Y ) )
18 17 pm5.32da
 |-  ( Y e. ( SubGrp ` G ) -> ( ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( x e. X /\ x e. Y ) ) )
19 1 subgss
 |-  ( Y e. ( SubGrp ` G ) -> Y C_ X )
20 1 3 grpidcl
 |-  ( G e. Grp -> .0. e. X )
21 7 20 syl
 |-  ( Y e. ( SubGrp ` G ) -> .0. e. X )
22 1 9 13 2 eqgval
 |-  ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) )
23 3anass
 |-  ( ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) )
24 22 23 bitrdi
 |-  ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) )
25 24 baibd
 |-  ( ( ( G e. Grp /\ Y C_ X ) /\ .0. e. X ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) )
26 7 19 21 25 syl21anc
 |-  ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) )
27 19 sseld
 |-  ( Y e. ( SubGrp ` G ) -> ( x e. Y -> x e. X ) )
28 27 pm4.71rd
 |-  ( Y e. ( SubGrp ` G ) -> ( x e. Y <-> ( x e. X /\ x e. Y ) ) )
29 18 26 28 3bitr4d
 |-  ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> x e. Y ) )
30 6 29 syl5bb
 |-  ( Y e. ( SubGrp ` G ) -> ( x e. [ .0. ] .~ <-> x e. Y ) )
31 30 eqrdv
 |-  ( Y e. ( SubGrp ` G ) -> [ .0. ] .~ = Y )