| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgntr.h |
|
| 2 |
|
eqid |
|
| 3 |
2
|
subgss |
|
| 4 |
3
|
3ad2ant2 |
|
| 5 |
1 2
|
tgptopon |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
|
toponuni |
|
| 8 |
6 7
|
syl |
|
| 9 |
4 8
|
sseqtrd |
|
| 10 |
8
|
difeq1d |
|
| 11 |
|
df-ima |
|
| 12 |
4
|
adantr |
|
| 13 |
12
|
resmptd |
|
| 14 |
13
|
rneqd |
|
| 15 |
11 14
|
eqtrid |
|
| 16 |
|
simpl1 |
|
| 17 |
|
eldifi |
|
| 18 |
17
|
adantl |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
19 2 20 1
|
tgplacthmeo |
|
| 22 |
16 18 21
|
syl2anc |
|
| 23 |
|
simpl3 |
|
| 24 |
|
hmeoima |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
15 25
|
eqeltrrd |
|
| 27 |
|
tgpgrp |
|
| 28 |
16 27
|
syl |
|
| 29 |
|
eqid |
|
| 30 |
2 20 29
|
grprid |
|
| 31 |
28 18 30
|
syl2anc |
|
| 32 |
|
simpl2 |
|
| 33 |
29
|
subg0cl |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
ovex |
|
| 36 |
|
eqid |
|
| 37 |
|
oveq2 |
|
| 38 |
36 37
|
elrnmpt1s |
|
| 39 |
34 35 38
|
sylancl |
|
| 40 |
31 39
|
eqeltrrd |
|
| 41 |
28
|
adantr |
|
| 42 |
18
|
adantr |
|
| 43 |
12
|
sselda |
|
| 44 |
2 20
|
grpcl |
|
| 45 |
41 42 43 44
|
syl3anc |
|
| 46 |
|
eldifn |
|
| 47 |
46
|
ad2antlr |
|
| 48 |
|
eqid |
|
| 49 |
48
|
subgsubcl |
|
| 50 |
49
|
3com23 |
|
| 51 |
50
|
3expia |
|
| 52 |
32 51
|
sylan |
|
| 53 |
2 20 48
|
grppncan |
|
| 54 |
41 42 43 53
|
syl3anc |
|
| 55 |
54
|
eleq1d |
|
| 56 |
52 55
|
sylibd |
|
| 57 |
47 56
|
mtod |
|
| 58 |
45 57
|
eldifd |
|
| 59 |
58
|
fmpttd |
|
| 60 |
59
|
frnd |
|
| 61 |
|
eleq2 |
|
| 62 |
|
sseq1 |
|
| 63 |
61 62
|
anbi12d |
|
| 64 |
63
|
rspcev |
|
| 65 |
26 40 60 64
|
syl12anc |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
topontop |
|
| 68 |
6 67
|
syl |
|
| 69 |
|
eltop2 |
|
| 70 |
68 69
|
syl |
|
| 71 |
66 70
|
mpbird |
|
| 72 |
10 71
|
eqeltrrd |
|
| 73 |
|
eqid |
|
| 74 |
73
|
iscld |
|
| 75 |
68 74
|
syl |
|
| 76 |
9 72 75
|
mpbir2and |
|