| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgntr.h |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 3 |
2
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 5 |
1 2
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 9 |
4 8
|
sseqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 |
8
|
difeq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) = ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 11 |
|
df-ima |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) |
| 12 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
12
|
resmptd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 14 |
13
|
rneqd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 15 |
11 14
|
eqtrid |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 16 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝐺 ∈ TopGrp ) |
| 17 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 19 |
|
eqid |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 21 |
19 2 20 1
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 22 |
16 18 21
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 23 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) |
| 24 |
|
hmeoima |
⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) ∈ 𝐽 ) |
| 25 |
22 23 24
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) “ 𝑆 ) ∈ 𝐽 ) |
| 26 |
15 25
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ) |
| 27 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 28 |
16 27
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 30 |
2 20 29
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 31 |
28 18 30
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 32 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 33 |
29
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 35 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ V |
| 36 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 37 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 38 |
36 37
|
elrnmpt1s |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ V ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 39 |
34 35 38
|
sylancl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 40 |
31 39
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 41 |
28
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 42 |
18
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 43 |
12
|
sselda |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 44 |
2 20
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 45 |
41 42 43 44
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 46 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) → ¬ 𝑥 ∈ 𝑆 ) |
| 47 |
46
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ¬ 𝑥 ∈ 𝑆 ) |
| 48 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 49 |
48
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 50 |
49
|
3com23 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 51 |
50
|
3expia |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 52 |
32 51
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 53 |
2 20 48
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 54 |
41 42 43 53
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 55 |
54
|
eleq1d |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ↔ 𝑥 ∈ 𝑆 ) ) |
| 56 |
52 55
|
sylibd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 → 𝑥 ∈ 𝑆 ) ) |
| 57 |
47 56
|
mtod |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ¬ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 58 |
45 57
|
eldifd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 59 |
58
|
fmpttd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : 𝑆 ⟶ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 60 |
59
|
frnd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) |
| 61 |
|
eleq2 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 62 |
|
sseq1 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ↔ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 63 |
61 62
|
anbi12d |
⊢ ( 𝑢 = ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ↔ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) |
| 64 |
63
|
rspcev |
⊢ ( ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ∧ ( 𝑥 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 65 |
26 40 60 64
|
syl12anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 66 |
65
|
ralrimiva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) |
| 67 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
| 68 |
6 67
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
| 69 |
|
eltop2 |
⊢ ( 𝐽 ∈ Top → ( ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ) ) ) |
| 71 |
66 70
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( Base ‘ 𝐺 ) ∖ 𝑆 ) ∈ 𝐽 ) |
| 72 |
10 71
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) |
| 73 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 74 |
73
|
iscld |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 75 |
68 74
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
| 76 |
9 72 75
|
mpbir2and |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |