Metamath Proof Explorer


Theorem hmeocld

Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X=J
Assertion hmeocld FJHomeoKAXAClsdJFAClsdK

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X=J
2 hmeocnvcn FJHomeoKF-1KCnJ
3 2 adantr FJHomeoKAXF-1KCnJ
4 imacnvcnv F-1-1A=FA
5 cnclima F-1KCnJAClsdJF-1-1AClsdK
6 4 5 eqeltrrid F-1KCnJAClsdJFAClsdK
7 6 ex F-1KCnJAClsdJFAClsdK
8 3 7 syl FJHomeoKAXAClsdJFAClsdK
9 hmeocn FJHomeoKFJCnK
10 9 adantr FJHomeoKAXFJCnK
11 cnclima FJCnKFAClsdKF-1FAClsdJ
12 11 ex FJCnKFAClsdKF-1FAClsdJ
13 10 12 syl FJHomeoKAXFAClsdKF-1FAClsdJ
14 eqid K=K
15 1 14 hmeof1o FJHomeoKF:X1-1 ontoK
16 f1of1 F:X1-1 ontoKF:X1-1K
17 15 16 syl FJHomeoKF:X1-1K
18 f1imacnv F:X1-1KAXF-1FA=A
19 17 18 sylan FJHomeoKAXF-1FA=A
20 19 eleq1d FJHomeoKAXF-1FAClsdJAClsdJ
21 13 20 sylibd FJHomeoKAXFAClsdKAClsdJ
22 8 21 impbid FJHomeoKAXAClsdJFAClsdK