Metamath Proof Explorer


Theorem hmeof1o

Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses hmeof1o.1 X=J
hmeof1o.2 Y=K
Assertion hmeof1o FJHomeoKF:X1-1 ontoY

Proof

Step Hyp Ref Expression
1 hmeof1o.1 X=J
2 hmeof1o.2 Y=K
3 hmeocn FJHomeoKFJCnK
4 cntop1 FJCnKJTop
5 1 toptopon JTopJTopOnX
6 4 5 sylib FJCnKJTopOnX
7 cntop2 FJCnKKTop
8 2 toptopon KTopKTopOnY
9 7 8 sylib FJCnKKTopOnY
10 6 9 jca FJCnKJTopOnXKTopOnY
11 3 10 syl FJHomeoKJTopOnXKTopOnY
12 hmeof1o2 JTopOnXKTopOnYFJHomeoKF:X1-1 ontoY
13 12 3expia JTopOnXKTopOnYFJHomeoKF:X1-1 ontoY
14 11 13 mpcom FJHomeoKF:X1-1 ontoY