| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 4 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
| 5 |
|
cnclima |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 6 |
4 5
|
eqeltrrid |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 7 |
6
|
ex |
⊢ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |
| 9 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 11 |
|
cnclima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 12 |
11
|
ex |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 14 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 15 |
1 14
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 16 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 18 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 19 |
17 18
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 20 |
19
|
eleq1d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( Clsd ‘ 𝐽 ) ↔ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 21 |
13 20
|
sylibd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 22 |
8 21
|
impbid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐾 ) ) ) |