| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptuniconst.2 |
⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) |
| 2 |
|
id |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
2
|
ralrimivw |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑅 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) |
| 5 |
4
|
fveq2i |
⊢ ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 6 |
1 5
|
eqtri |
⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 7 |
6
|
pttopon |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
| 8 |
3 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
| 9 |
|
toponmax |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) |
| 10 |
|
ixpconstg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) |
| 11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) = ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |
| 13 |
8 12
|
eleqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |