Metamath Proof Explorer


Theorem pttoponconst

Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptuniconst.2 J=𝑡A×R
Assertion pttoponconst AVRTopOnXJTopOnXA

Proof

Step Hyp Ref Expression
1 ptuniconst.2 J=𝑡A×R
2 id RTopOnXRTopOnX
3 2 ralrimivw RTopOnXxARTopOnX
4 fconstmpt A×R=xAR
5 4 fveq2i 𝑡A×R=𝑡xAR
6 1 5 eqtri J=𝑡xAR
7 6 pttopon AVxARTopOnXJTopOnxAX
8 3 7 sylan2 AVRTopOnXJTopOnxAX
9 toponmax RTopOnXXR
10 ixpconstg AVXRxAX=XA
11 9 10 sylan2 AVRTopOnXxAX=XA
12 11 fveq2d AVRTopOnXTopOnxAX=TopOnXA
13 8 12 eleqtrd AVRTopOnXJTopOnXA