| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efmndtmd.g |
|
| 2 |
1
|
efmndmnd |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
efmndtopn |
|
| 5 |
|
distopon |
|
| 6 |
|
eqid |
|
| 7 |
6
|
pttoponconst |
|
| 8 |
5 7
|
mpdan |
|
| 9 |
1 3
|
efmndbas |
|
| 10 |
9
|
eleq2i |
|
| 11 |
10
|
biimpi |
|
| 12 |
11
|
a1i |
|
| 13 |
12
|
ssrdv |
|
| 14 |
|
resttopon |
|
| 15 |
8 13 14
|
syl2anc |
|
| 16 |
4 15
|
eqeltrrd |
|
| 17 |
|
eqid |
|
| 18 |
3 17
|
istps |
|
| 19 |
16 18
|
sylibr |
|
| 20 |
|
eqid |
|
| 21 |
1 3 20
|
efmndplusg |
|
| 22 |
|
eqid |
|
| 23 |
|
distop |
|
| 24 |
|
eqid |
|
| 25 |
24
|
xkotopon |
|
| 26 |
23 23 25
|
syl2anc |
|
| 27 |
|
cndis |
|
| 28 |
5 27
|
mpdan |
|
| 29 |
13 28
|
sseqtrrd |
|
| 30 |
|
disllycmp |
|
| 31 |
|
llynlly |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
eqid |
|
| 34 |
33
|
xkococn |
|
| 35 |
23 32 23 34
|
syl3anc |
|
| 36 |
22 26 29 22 26 29 35
|
cnmpt2res |
|
| 37 |
21 36
|
eqeltrid |
|
| 38 |
|
xkopt |
|
| 39 |
23 38
|
mpancom |
|
| 40 |
39
|
oveq1d |
|
| 41 |
40 4
|
eqtrd |
|
| 42 |
41 41
|
oveq12d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
37 43
|
eleqtrd |
|
| 45 |
|
vex |
|
| 46 |
|
vex |
|
| 47 |
45 46
|
coex |
|
| 48 |
21 47
|
fnmpoi |
|
| 49 |
|
eqid |
|
| 50 |
3 20 49
|
plusfeq |
|
| 51 |
48 50
|
ax-mp |
|
| 52 |
51
|
eqcomi |
|
| 53 |
3 52
|
mndplusf |
|
| 54 |
|
frn |
|
| 55 |
2 53 54
|
3syl |
|
| 56 |
|
cnrest2 |
|
| 57 |
26 55 29 56
|
syl3anc |
|
| 58 |
44 57
|
mpbid |
|
| 59 |
41
|
oveq2d |
|
| 60 |
58 59
|
eleqtrd |
|
| 61 |
52 17
|
istmd |
|
| 62 |
2 19 60 61
|
syl3anbrc |
|