| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efmndtmd.g |
|- M = ( EndoFMnd ` A ) |
| 2 |
1
|
efmndmnd |
|- ( A e. V -> M e. Mnd ) |
| 3 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 4 |
1 3
|
efmndtopn |
|- ( A e. V -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) = ( TopOpen ` M ) ) |
| 5 |
|
distopon |
|- ( A e. V -> ~P A e. ( TopOn ` A ) ) |
| 6 |
|
eqid |
|- ( Xt_ ` ( A X. { ~P A } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) |
| 7 |
6
|
pttoponconst |
|- ( ( A e. V /\ ~P A e. ( TopOn ` A ) ) -> ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) ) |
| 8 |
5 7
|
mpdan |
|- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) ) |
| 9 |
1 3
|
efmndbas |
|- ( Base ` M ) = ( A ^m A ) |
| 10 |
9
|
eleq2i |
|- ( x e. ( Base ` M ) <-> x e. ( A ^m A ) ) |
| 11 |
10
|
biimpi |
|- ( x e. ( Base ` M ) -> x e. ( A ^m A ) ) |
| 12 |
11
|
a1i |
|- ( A e. V -> ( x e. ( Base ` M ) -> x e. ( A ^m A ) ) ) |
| 13 |
12
|
ssrdv |
|- ( A e. V -> ( Base ` M ) C_ ( A ^m A ) ) |
| 14 |
|
resttopon |
|- ( ( ( Xt_ ` ( A X. { ~P A } ) ) e. ( TopOn ` ( A ^m A ) ) /\ ( Base ` M ) C_ ( A ^m A ) ) -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) e. ( TopOn ` ( Base ` M ) ) ) |
| 15 |
8 13 14
|
syl2anc |
|- ( A e. V -> ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) e. ( TopOn ` ( Base ` M ) ) ) |
| 16 |
4 15
|
eqeltrrd |
|- ( A e. V -> ( TopOpen ` M ) e. ( TopOn ` ( Base ` M ) ) ) |
| 17 |
|
eqid |
|- ( TopOpen ` M ) = ( TopOpen ` M ) |
| 18 |
3 17
|
istps |
|- ( M e. TopSp <-> ( TopOpen ` M ) e. ( TopOn ` ( Base ` M ) ) ) |
| 19 |
16 18
|
sylibr |
|- ( A e. V -> M e. TopSp ) |
| 20 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 21 |
1 3 20
|
efmndplusg |
|- ( +g ` M ) = ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( x o. y ) ) |
| 22 |
|
eqid |
|- ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) |
| 23 |
|
distop |
|- ( A e. V -> ~P A e. Top ) |
| 24 |
|
eqid |
|- ( ~P A ^ko ~P A ) = ( ~P A ^ko ~P A ) |
| 25 |
24
|
xkotopon |
|- ( ( ~P A e. Top /\ ~P A e. Top ) -> ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) ) |
| 26 |
23 23 25
|
syl2anc |
|- ( A e. V -> ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) ) |
| 27 |
|
cndis |
|- ( ( A e. V /\ ~P A e. ( TopOn ` A ) ) -> ( ~P A Cn ~P A ) = ( A ^m A ) ) |
| 28 |
5 27
|
mpdan |
|- ( A e. V -> ( ~P A Cn ~P A ) = ( A ^m A ) ) |
| 29 |
13 28
|
sseqtrrd |
|- ( A e. V -> ( Base ` M ) C_ ( ~P A Cn ~P A ) ) |
| 30 |
|
disllycmp |
|- ( A e. V -> ~P A e. Locally Comp ) |
| 31 |
|
llynlly |
|- ( ~P A e. Locally Comp -> ~P A e. N-Locally Comp ) |
| 32 |
30 31
|
syl |
|- ( A e. V -> ~P A e. N-Locally Comp ) |
| 33 |
|
eqid |
|- ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) = ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) |
| 34 |
33
|
xkococn |
|- ( ( ~P A e. Top /\ ~P A e. N-Locally Comp /\ ~P A e. Top ) -> ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) e. ( ( ( ~P A ^ko ~P A ) tX ( ~P A ^ko ~P A ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 35 |
23 32 23 34
|
syl3anc |
|- ( A e. V -> ( x e. ( ~P A Cn ~P A ) , y e. ( ~P A Cn ~P A ) |-> ( x o. y ) ) e. ( ( ( ~P A ^ko ~P A ) tX ( ~P A ^ko ~P A ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 36 |
22 26 29 22 26 29 35
|
cnmpt2res |
|- ( A e. V -> ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( x o. y ) ) e. ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 37 |
21 36
|
eqeltrid |
|- ( A e. V -> ( +g ` M ) e. ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 38 |
|
xkopt |
|- ( ( ~P A e. Top /\ A e. V ) -> ( ~P A ^ko ~P A ) = ( Xt_ ` ( A X. { ~P A } ) ) ) |
| 39 |
23 38
|
mpancom |
|- ( A e. V -> ( ~P A ^ko ~P A ) = ( Xt_ ` ( A X. { ~P A } ) ) ) |
| 40 |
39
|
oveq1d |
|- ( A e. V -> ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( ( Xt_ ` ( A X. { ~P A } ) ) |`t ( Base ` M ) ) ) |
| 41 |
40 4
|
eqtrd |
|- ( A e. V -> ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) = ( TopOpen ` M ) ) |
| 42 |
41 41
|
oveq12d |
|- ( A e. V -> ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) = ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) ) |
| 43 |
42
|
oveq1d |
|- ( A e. V -> ( ( ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) tX ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) Cn ( ~P A ^ko ~P A ) ) = ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 44 |
37 43
|
eleqtrd |
|- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) ) |
| 45 |
|
vex |
|- x e. _V |
| 46 |
|
vex |
|- y e. _V |
| 47 |
45 46
|
coex |
|- ( x o. y ) e. _V |
| 48 |
21 47
|
fnmpoi |
|- ( +g ` M ) Fn ( ( Base ` M ) X. ( Base ` M ) ) |
| 49 |
|
eqid |
|- ( +f ` M ) = ( +f ` M ) |
| 50 |
3 20 49
|
plusfeq |
|- ( ( +g ` M ) Fn ( ( Base ` M ) X. ( Base ` M ) ) -> ( +f ` M ) = ( +g ` M ) ) |
| 51 |
48 50
|
ax-mp |
|- ( +f ` M ) = ( +g ` M ) |
| 52 |
51
|
eqcomi |
|- ( +g ` M ) = ( +f ` M ) |
| 53 |
3 52
|
mndplusf |
|- ( M e. Mnd -> ( +g ` M ) : ( ( Base ` M ) X. ( Base ` M ) ) --> ( Base ` M ) ) |
| 54 |
|
frn |
|- ( ( +g ` M ) : ( ( Base ` M ) X. ( Base ` M ) ) --> ( Base ` M ) -> ran ( +g ` M ) C_ ( Base ` M ) ) |
| 55 |
2 53 54
|
3syl |
|- ( A e. V -> ran ( +g ` M ) C_ ( Base ` M ) ) |
| 56 |
|
cnrest2 |
|- ( ( ( ~P A ^ko ~P A ) e. ( TopOn ` ( ~P A Cn ~P A ) ) /\ ran ( +g ` M ) C_ ( Base ` M ) /\ ( Base ` M ) C_ ( ~P A Cn ~P A ) ) -> ( ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) <-> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) ) |
| 57 |
26 55 29 56
|
syl3anc |
|- ( A e. V -> ( ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ~P A ^ko ~P A ) ) <-> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) ) |
| 58 |
44 57
|
mpbid |
|- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) ) |
| 59 |
41
|
oveq2d |
|- ( A e. V -> ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( ( ~P A ^ko ~P A ) |`t ( Base ` M ) ) ) = ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) |
| 60 |
58 59
|
eleqtrd |
|- ( A e. V -> ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) |
| 61 |
52 17
|
istmd |
|- ( M e. TopMnd <-> ( M e. Mnd /\ M e. TopSp /\ ( +g ` M ) e. ( ( ( TopOpen ` M ) tX ( TopOpen ` M ) ) Cn ( TopOpen ` M ) ) ) ) |
| 62 |
2 19 60 61
|
syl3anbrc |
|- ( A e. V -> M e. TopMnd ) |