Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plusffval.1 | |- B = ( Base ` G ) |
|
plusffval.2 | |- .+ = ( +g ` G ) |
||
plusffval.3 | |- .+^ = ( +f ` G ) |
||
Assertion | plusfeq | |- ( .+ Fn ( B X. B ) -> .+^ = .+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | |- B = ( Base ` G ) |
|
2 | plusffval.2 | |- .+ = ( +g ` G ) |
|
3 | plusffval.3 | |- .+^ = ( +f ` G ) |
|
4 | 1 2 3 | plusffval | |- .+^ = ( x e. B , y e. B |-> ( x .+ y ) ) |
5 | fnov | |- ( .+ Fn ( B X. B ) <-> .+ = ( x e. B , y e. B |-> ( x .+ y ) ) ) |
|
6 | 5 | biimpi | |- ( .+ Fn ( B X. B ) -> .+ = ( x e. B , y e. B |-> ( x .+ y ) ) ) |
7 | 4 6 | eqtr4id | |- ( .+ Fn ( B X. B ) -> .+^ = .+ ) |