Metamath Proof Explorer


Theorem plusfeq

Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses plusffval.1
|- B = ( Base ` G )
plusffval.2
|- .+ = ( +g ` G )
plusffval.3
|- .+^ = ( +f ` G )
Assertion plusfeq
|- ( .+ Fn ( B X. B ) -> .+^ = .+ )

Proof

Step Hyp Ref Expression
1 plusffval.1
 |-  B = ( Base ` G )
2 plusffval.2
 |-  .+ = ( +g ` G )
3 plusffval.3
 |-  .+^ = ( +f ` G )
4 1 2 3 plusffval
 |-  .+^ = ( x e. B , y e. B |-> ( x .+ y ) )
5 fnov
 |-  ( .+ Fn ( B X. B ) <-> .+ = ( x e. B , y e. B |-> ( x .+ y ) ) )
6 5 biimpi
 |-  ( .+ Fn ( B X. B ) -> .+ = ( x e. B , y e. B |-> ( x .+ y ) ) )
7 4 6 eqtr4id
 |-  ( .+ Fn ( B X. B ) -> .+^ = .+ )