Metamath Proof Explorer


Theorem tmdlactcn

Description: The left group action of element A in a topological monoid G is a continuous function. (Contributed by FL, 18-Mar-2008) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgplacthmeo.1
|- F = ( x e. X |-> ( A .+ x ) )
tgplacthmeo.2
|- X = ( Base ` G )
tgplacthmeo.3
|- .+ = ( +g ` G )
tgplacthmeo.4
|- J = ( TopOpen ` G )
Assertion tmdlactcn
|- ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) )

Proof

Step Hyp Ref Expression
1 tgplacthmeo.1
 |-  F = ( x e. X |-> ( A .+ x ) )
2 tgplacthmeo.2
 |-  X = ( Base ` G )
3 tgplacthmeo.3
 |-  .+ = ( +g ` G )
4 tgplacthmeo.4
 |-  J = ( TopOpen ` G )
5 simpl
 |-  ( ( G e. TopMnd /\ A e. X ) -> G e. TopMnd )
6 4 2 tmdtopon
 |-  ( G e. TopMnd -> J e. ( TopOn ` X ) )
7 6 adantr
 |-  ( ( G e. TopMnd /\ A e. X ) -> J e. ( TopOn ` X ) )
8 simpr
 |-  ( ( G e. TopMnd /\ A e. X ) -> A e. X )
9 7 7 8 cnmptc
 |-  ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> A ) e. ( J Cn J ) )
10 7 cnmptid
 |-  ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> x ) e. ( J Cn J ) )
11 4 3 5 7 9 10 cnmpt1plusg
 |-  ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> ( A .+ x ) ) e. ( J Cn J ) )
12 1 11 eqeltrid
 |-  ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) )