| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgplacthmeo.1 |
|- F = ( x e. X |-> ( A .+ x ) ) |
| 2 |
|
tgplacthmeo.2 |
|- X = ( Base ` G ) |
| 3 |
|
tgplacthmeo.3 |
|- .+ = ( +g ` G ) |
| 4 |
|
tgplacthmeo.4 |
|- J = ( TopOpen ` G ) |
| 5 |
|
simpl |
|- ( ( G e. TopMnd /\ A e. X ) -> G e. TopMnd ) |
| 6 |
4 2
|
tmdtopon |
|- ( G e. TopMnd -> J e. ( TopOn ` X ) ) |
| 7 |
6
|
adantr |
|- ( ( G e. TopMnd /\ A e. X ) -> J e. ( TopOn ` X ) ) |
| 8 |
|
simpr |
|- ( ( G e. TopMnd /\ A e. X ) -> A e. X ) |
| 9 |
7 7 8
|
cnmptc |
|- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> A ) e. ( J Cn J ) ) |
| 10 |
7
|
cnmptid |
|- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> x ) e. ( J Cn J ) ) |
| 11 |
4 3 5 7 9 10
|
cnmpt1plusg |
|- ( ( G e. TopMnd /\ A e. X ) -> ( x e. X |-> ( A .+ x ) ) e. ( J Cn J ) ) |
| 12 |
1 11
|
eqeltrid |
|- ( ( G e. TopMnd /\ A e. X ) -> F e. ( J Cn J ) ) |