Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmptc.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| cnmptc.p | |- ( ph -> P e. Y ) |
||
| Assertion | cnmptc | |- ( ph -> ( x e. X |-> P ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptid.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmptc.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | cnmptc.p | |- ( ph -> P e. Y ) |
|
| 4 | fconstmpt | |- ( X X. { P } ) = ( x e. X |-> P ) |
|
| 5 | cnconst2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. Y ) -> ( X X. { P } ) e. ( J Cn K ) ) |
|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( X X. { P } ) e. ( J Cn K ) ) |
| 7 | 4 6 | eqeltrrid | |- ( ph -> ( x e. X |-> P ) e. ( J Cn K ) ) |