Step |
Hyp |
Ref |
Expression |
1 |
|
tgplacthmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) |
2 |
|
tgplacthmeo.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
tgplacthmeo.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
tgplacthmeo.4 |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
5 |
|
simpl |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ TopMnd ) |
6 |
4 2
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
9 |
7 7 8
|
cnmptc |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
10 |
7
|
cnmptid |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
11 |
4 3 5 7 9 10
|
cnmpt1plusg |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
12 |
1 11
|
eqeltrid |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |