Metamath Proof Explorer


Definition df-lly

Description: Define a space that is locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is locally A if every neighborhood of a point contains an open subneighborhood that is A in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion df-lly Locally A = jTop|xjyxuj𝒫xyuj𝑡uA

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 0 clly classLocally A
2 vj setvarj
3 ctop classTop
4 vx setvarx
5 2 cv setvarj
6 vy setvary
7 4 cv setvarx
8 vu setvaru
9 7 cpw class𝒫x
10 5 9 cin classj𝒫x
11 6 cv setvary
12 8 cv setvaru
13 11 12 wcel wffyu
14 crest class𝑡
15 5 12 14 co classj𝑡u
16 15 0 wcel wffj𝑡uA
17 13 16 wa wffyuj𝑡uA
18 17 8 10 wrex wffuj𝒫xyuj𝑡uA
19 18 6 7 wral wffyxuj𝒫xyuj𝑡uA
20 19 4 5 wral wffxjyxuj𝒫xyuj𝑡uA
21 20 2 3 crab classjTop|xjyxuj𝒫xyuj𝑡uA
22 1 21 wceq wffLocally A = jTop|xjyxuj𝒫xyuj𝑡uA