Metamath Proof Explorer


Theorem cnfldtgp

Description: The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion cnfldtgp fldTopGrp

Proof

Step Hyp Ref Expression
1 cnring fldRing
2 ringgrp fldRingfldGrp
3 1 2 ax-mp fldGrp
4 cnfldtps fldTopSp
5 eqid TopOpenfld=TopOpenfld
6 5 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
7 cnfldsub =-fld
8 5 7 istgp2 fldTopGrpfldGrpfldTopSpTopOpenfld×tTopOpenfldCnTopOpenfld
9 3 4 6 8 mpbir3an fldTopGrp