Metamath Proof Explorer


Theorem istgp2

Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tgpsubcn.2 J = TopOpen G
tgpsubcn.3 - ˙ = - G
Assertion istgp2 G TopGrp G Grp G TopSp - ˙ J × t J Cn J

Proof

Step Hyp Ref Expression
1 tgpsubcn.2 J = TopOpen G
2 tgpsubcn.3 - ˙ = - G
3 tgpgrp G TopGrp G Grp
4 tgptps G TopGrp G TopSp
5 1 2 tgpsubcn G TopGrp - ˙ J × t J Cn J
6 3 4 5 3jca G TopGrp G Grp G TopSp - ˙ J × t J Cn J
7 simp1 G Grp G TopSp - ˙ J × t J Cn J G Grp
8 grpmnd G Grp G Mnd
9 8 3ad2ant1 G Grp G TopSp - ˙ J × t J Cn J G Mnd
10 simp2 G Grp G TopSp - ˙ J × t J Cn J G TopSp
11 eqid Base G = Base G
12 eqid + G = + G
13 eqid inv g G = inv g G
14 7 3ad2ant1 G Grp G TopSp - ˙ J × t J Cn J x Base G y Base G G Grp
15 simp2 G Grp G TopSp - ˙ J × t J Cn J x Base G y Base G x Base G
16 simp3 G Grp G TopSp - ˙ J × t J Cn J x Base G y Base G y Base G
17 11 12 2 13 14 15 16 grpsubinv G Grp G TopSp - ˙ J × t J Cn J x Base G y Base G x - ˙ inv g G y = x + G y
18 17 mpoeq3dva G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G x - ˙ inv g G y = x Base G , y Base G x + G y
19 eqid + 𝑓 G = + 𝑓 G
20 11 12 19 plusffval + 𝑓 G = x Base G , y Base G x + G y
21 18 20 eqtr4di G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G x - ˙ inv g G y = + 𝑓 G
22 11 1 istps G TopSp J TopOn Base G
23 10 22 sylib G Grp G TopSp - ˙ J × t J Cn J J TopOn Base G
24 23 23 cnmpt1st G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G x J × t J Cn J
25 23 23 cnmpt2nd G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G y J × t J Cn J
26 11 13 grpinvf G Grp inv g G : Base G Base G
27 26 3ad2ant1 G Grp G TopSp - ˙ J × t J Cn J inv g G : Base G Base G
28 27 feqmptd G Grp G TopSp - ˙ J × t J Cn J inv g G = x Base G inv g G x
29 eqid 0 G = 0 G
30 11 2 13 29 grpinvval2 G Grp x Base G inv g G x = 0 G - ˙ x
31 7 30 sylan G Grp G TopSp - ˙ J × t J Cn J x Base G inv g G x = 0 G - ˙ x
32 31 mpteq2dva G Grp G TopSp - ˙ J × t J Cn J x Base G inv g G x = x Base G 0 G - ˙ x
33 28 32 eqtrd G Grp G TopSp - ˙ J × t J Cn J inv g G = x Base G 0 G - ˙ x
34 11 29 grpidcl G Grp 0 G Base G
35 34 3ad2ant1 G Grp G TopSp - ˙ J × t J Cn J 0 G Base G
36 23 23 35 cnmptc G Grp G TopSp - ˙ J × t J Cn J x Base G 0 G J Cn J
37 23 cnmptid G Grp G TopSp - ˙ J × t J Cn J x Base G x J Cn J
38 simp3 G Grp G TopSp - ˙ J × t J Cn J - ˙ J × t J Cn J
39 23 36 37 38 cnmpt12f G Grp G TopSp - ˙ J × t J Cn J x Base G 0 G - ˙ x J Cn J
40 33 39 eqeltrd G Grp G TopSp - ˙ J × t J Cn J inv g G J Cn J
41 23 23 25 40 cnmpt21f G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G inv g G y J × t J Cn J
42 23 23 24 41 38 cnmpt22f G Grp G TopSp - ˙ J × t J Cn J x Base G , y Base G x - ˙ inv g G y J × t J Cn J
43 21 42 eqeltrrd G Grp G TopSp - ˙ J × t J Cn J + 𝑓 G J × t J Cn J
44 19 1 istmd G TopMnd G Mnd G TopSp + 𝑓 G J × t J Cn J
45 9 10 43 44 syl3anbrc G Grp G TopSp - ˙ J × t J Cn J G TopMnd
46 1 13 istgp G TopGrp G Grp G TopMnd inv g G J Cn J
47 7 45 40 46 syl3anbrc G Grp G TopSp - ˙ J × t J Cn J G TopGrp
48 6 47 impbii G TopGrp G Grp G TopSp - ˙ J × t J Cn J