Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgpmulg.j | |
|
tgpmulg.t | |
||
tgpmulg.b | |
||
Assertion | tmdmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpmulg.j | |
|
2 | tgpmulg.t | |
|
3 | tgpmulg.b | |
|
4 | oveq1 | |
|
5 | eqid | |
|
6 | 3 5 2 | mulg0 | |
7 | 4 6 | sylan9eq | |
8 | 7 | mpteq2dva | |
9 | 8 | eleq1d | |
10 | oveq1 | |
|
11 | 10 | mpteq2dv | |
12 | 11 | eleq1d | |
13 | oveq1 | |
|
14 | 13 | mpteq2dv | |
15 | 14 | eleq1d | |
16 | oveq1 | |
|
17 | 16 | mpteq2dv | |
18 | 17 | eleq1d | |
19 | 1 3 | tmdtopon | |
20 | tmdmnd | |
|
21 | 3 5 | mndidcl | |
22 | 20 21 | syl | |
23 | 19 19 22 | cnmptc | |
24 | oveq2 | |
|
25 | 24 | cbvmptv | |
26 | eqid | |
|
27 | 3 2 26 | mulgnn0p1 | |
28 | 20 27 | syl3an1 | |
29 | 28 | ad4ant124 | |
30 | 29 | mpteq2dva | |
31 | 25 30 | eqtrid | |
32 | simpll | |
|
33 | 32 19 | syl | |
34 | oveq2 | |
|
35 | 34 | cbvmptv | |
36 | simpr | |
|
37 | 35 36 | eqeltrrid | |
38 | 33 | cnmptid | |
39 | 1 26 32 33 37 38 | cnmpt1plusg | |
40 | 31 39 | eqeltrd | |
41 | 9 12 15 18 23 40 | nn0indd | |