Metamath Proof Explorer


Theorem tmdmulg

Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpmulg.j J=TopOpenG
tgpmulg.t ·˙=G
tgpmulg.b B=BaseG
Assertion tmdmulg GTopMndN0xBN·˙xJCnJ

Proof

Step Hyp Ref Expression
1 tgpmulg.j J=TopOpenG
2 tgpmulg.t ·˙=G
3 tgpmulg.b B=BaseG
4 oveq1 n=0n·˙x=0·˙x
5 eqid 0G=0G
6 3 5 2 mulg0 xB0·˙x=0G
7 4 6 sylan9eq n=0xBn·˙x=0G
8 7 mpteq2dva n=0xBn·˙x=xB0G
9 8 eleq1d n=0xBn·˙xJCnJxB0GJCnJ
10 oveq1 n=kn·˙x=k·˙x
11 10 mpteq2dv n=kxBn·˙x=xBk·˙x
12 11 eleq1d n=kxBn·˙xJCnJxBk·˙xJCnJ
13 oveq1 n=k+1n·˙x=k+1·˙x
14 13 mpteq2dv n=k+1xBn·˙x=xBk+1·˙x
15 14 eleq1d n=k+1xBn·˙xJCnJxBk+1·˙xJCnJ
16 oveq1 n=Nn·˙x=N·˙x
17 16 mpteq2dv n=NxBn·˙x=xBN·˙x
18 17 eleq1d n=NxBn·˙xJCnJxBN·˙xJCnJ
19 1 3 tmdtopon GTopMndJTopOnB
20 tmdmnd GTopMndGMnd
21 3 5 mndidcl GMnd0GB
22 20 21 syl GTopMnd0GB
23 19 19 22 cnmptc GTopMndxB0GJCnJ
24 oveq2 x=yk+1·˙x=k+1·˙y
25 24 cbvmptv xBk+1·˙x=yBk+1·˙y
26 eqid +G=+G
27 3 2 26 mulgnn0p1 GMndk0yBk+1·˙y=k·˙y+Gy
28 20 27 syl3an1 GTopMndk0yBk+1·˙y=k·˙y+Gy
29 28 ad4ant124 GTopMndk0xBk·˙xJCnJyBk+1·˙y=k·˙y+Gy
30 29 mpteq2dva GTopMndk0xBk·˙xJCnJyBk+1·˙y=yBk·˙y+Gy
31 25 30 eqtrid GTopMndk0xBk·˙xJCnJxBk+1·˙x=yBk·˙y+Gy
32 simpll GTopMndk0xBk·˙xJCnJGTopMnd
33 32 19 syl GTopMndk0xBk·˙xJCnJJTopOnB
34 oveq2 x=yk·˙x=k·˙y
35 34 cbvmptv xBk·˙x=yBk·˙y
36 simpr GTopMndk0xBk·˙xJCnJxBk·˙xJCnJ
37 35 36 eqeltrrid GTopMndk0xBk·˙xJCnJyBk·˙yJCnJ
38 33 cnmptid GTopMndk0xBk·˙xJCnJyByJCnJ
39 1 26 32 33 37 38 cnmpt1plusg GTopMndk0xBk·˙xJCnJyBk·˙y+GyJCnJ
40 31 39 eqeltrd GTopMndk0xBk·˙xJCnJxBk+1·˙xJCnJ
41 9 12 15 18 23 40 nn0indd GTopMndN0xBN·˙xJCnJ