Metamath Proof Explorer


Theorem tgpmulg

Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpmulg.j J = TopOpen G
tgpmulg.t · ˙ = G
tgpmulg.b B = Base G
Assertion tgpmulg G TopGrp N x B N · ˙ x J Cn J

Proof

Step Hyp Ref Expression
1 tgpmulg.j J = TopOpen G
2 tgpmulg.t · ˙ = G
3 tgpmulg.b B = Base G
4 tgptmd G TopGrp G TopMnd
5 1 2 3 tmdmulg G TopMnd N 0 x B N · ˙ x J Cn J
6 4 5 sylan G TopGrp N 0 x B N · ˙ x J Cn J
7 6 adantlr G TopGrp N N 0 x B N · ˙ x J Cn J
8 simpllr G TopGrp N N x B N
9 8 zcnd G TopGrp N N x B N
10 9 negnegd G TopGrp N N x B -N = N
11 10 oveq1d G TopGrp N N x B -N · ˙ x = N · ˙ x
12 eqid inv g G = inv g G
13 3 2 12 mulgnegnn N x B -N · ˙ x = inv g G -N · ˙ x
14 13 adantll G TopGrp N N x B -N · ˙ x = inv g G -N · ˙ x
15 11 14 eqtr3d G TopGrp N N x B N · ˙ x = inv g G -N · ˙ x
16 15 mpteq2dva G TopGrp N N x B N · ˙ x = x B inv g G -N · ˙ x
17 1 3 tgptopon G TopGrp J TopOn B
18 17 ad2antrr G TopGrp N N J TopOn B
19 4 adantr G TopGrp N G TopMnd
20 nnnn0 N N 0
21 1 2 3 tmdmulg G TopMnd N 0 x B -N · ˙ x J Cn J
22 19 20 21 syl2an G TopGrp N N x B -N · ˙ x J Cn J
23 1 12 tgpinv G TopGrp inv g G J Cn J
24 23 ad2antrr G TopGrp N N inv g G J Cn J
25 18 22 24 cnmpt11f G TopGrp N N x B inv g G -N · ˙ x J Cn J
26 16 25 eqeltrd G TopGrp N N x B N · ˙ x J Cn J
27 26 adantrl G TopGrp N N N x B N · ˙ x J Cn J
28 simpr G TopGrp N N
29 elznn0nn N N 0 N N
30 28 29 sylib G TopGrp N N 0 N N
31 7 27 30 mpjaodan G TopGrp N x B N · ˙ x J Cn J