Metamath Proof Explorer


Theorem cnmpt21f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φJTopOnX
cnmpt21.k φKTopOnY
cnmpt21.a φxX,yYAJ×tKCnL
cnmpt21f.f φFLCnM
Assertion cnmpt21f φxX,yYFAJ×tKCnM

Proof

Step Hyp Ref Expression
1 cnmpt21.j φJTopOnX
2 cnmpt21.k φKTopOnY
3 cnmpt21.a φxX,yYAJ×tKCnL
4 cnmpt21f.f φFLCnM
5 cntop1 FLCnMLTop
6 4 5 syl φLTop
7 toptopon2 LTopLTopOnL
8 6 7 sylib φLTopOnL
9 eqid L=L
10 eqid M=M
11 9 10 cnf FLCnMF:LM
12 4 11 syl φF:LM
13 12 feqmptd φF=zLFz
14 13 4 eqeltrrd φzLFzLCnM
15 fveq2 z=AFz=FA
16 1 2 3 8 14 15 cnmpt21 φxX,yYFAJ×tKCnM