Metamath Proof Explorer


Theorem cnmpt22f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φ J TopOn X
cnmpt21.k φ K TopOn Y
cnmpt21.a φ x X , y Y A J × t K Cn L
cnmpt2t.b φ x X , y Y B J × t K Cn M
cnmpt22f.f φ F L × t M Cn N
Assertion cnmpt22f φ x X , y Y A F B J × t K Cn N

Proof

Step Hyp Ref Expression
1 cnmpt21.j φ J TopOn X
2 cnmpt21.k φ K TopOn Y
3 cnmpt21.a φ x X , y Y A J × t K Cn L
4 cnmpt2t.b φ x X , y Y B J × t K Cn M
5 cnmpt22f.f φ F L × t M Cn N
6 cntop2 x X , y Y A J × t K Cn L L Top
7 3 6 syl φ L Top
8 toptopon2 L Top L TopOn L
9 7 8 sylib φ L TopOn L
10 cntop2 x X , y Y B J × t K Cn M M Top
11 4 10 syl φ M Top
12 toptopon2 M Top M TopOn M
13 11 12 sylib φ M TopOn M
14 txtopon L TopOn L M TopOn M L × t M TopOn L × M
15 9 13 14 syl2anc φ L × t M TopOn L × M
16 cntop2 F L × t M Cn N N Top
17 5 16 syl φ N Top
18 toptopon2 N Top N TopOn N
19 17 18 sylib φ N TopOn N
20 cnf2 L × t M TopOn L × M N TopOn N F L × t M Cn N F : L × M N
21 15 19 5 20 syl3anc φ F : L × M N
22 21 ffnd φ F Fn L × M
23 fnov F Fn L × M F = z L , w M z F w
24 22 23 sylib φ F = z L , w M z F w
25 24 5 eqeltrrd φ z L , w M z F w L × t M Cn N
26 oveq12 z = A w = B z F w = A F B
27 1 2 3 4 9 13 25 26 cnmpt22 φ x X , y Y A F B J × t K Cn N