Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmpt21.j | |
|
cnmpt21.k | |
||
cnmpt21.a | |
||
cnmpt2t.b | |
||
cnmpt22.l | |
||
cnmpt22.m | |
||
cnmpt22.c | |
||
cnmpt22.d | |
||
Assertion | cnmpt22 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | |
|
2 | cnmpt21.k | |
|
3 | cnmpt21.a | |
|
4 | cnmpt2t.b | |
|
5 | cnmpt22.l | |
|
6 | cnmpt22.m | |
|
7 | cnmpt22.c | |
|
8 | cnmpt22.d | |
|
9 | df-ov | |
|
10 | txtopon | |
|
11 | 1 2 10 | syl2anc | |
12 | cnf2 | |
|
13 | 11 5 3 12 | syl3anc | |
14 | eqid | |
|
15 | 14 | fmpo | |
16 | 13 15 | sylibr | |
17 | rsp2 | |
|
18 | 16 17 | syl | |
19 | 18 | 3impib | |
20 | cnf2 | |
|
21 | 11 6 4 20 | syl3anc | |
22 | eqid | |
|
23 | 22 | fmpo | |
24 | 21 23 | sylibr | |
25 | rsp2 | |
|
26 | 24 25 | syl | |
27 | 26 | 3impib | |
28 | 19 27 | jca | |
29 | txtopon | |
|
30 | 5 6 29 | syl2anc | |
31 | cntop2 | |
|
32 | 7 31 | syl | |
33 | toptopon2 | |
|
34 | 32 33 | sylib | |
35 | cnf2 | |
|
36 | 30 34 7 35 | syl3anc | |
37 | eqid | |
|
38 | 37 | fmpo | |
39 | 36 38 | sylibr | |
40 | r2al | |
|
41 | 39 40 | sylib | |
42 | 41 | 3ad2ant1 | |
43 | eleq1 | |
|
44 | eleq1 | |
|
45 | 43 44 | bi2anan9 | |
46 | 8 | eleq1d | |
47 | 45 46 | imbi12d | |
48 | 47 | spc2gv | |
49 | 28 42 28 48 | syl3c | |
50 | 8 37 | ovmpoga | |
51 | 19 27 49 50 | syl3anc | |
52 | 9 51 | eqtr3id | |
53 | 52 | mpoeq3dva | |
54 | 1 2 3 4 | cnmpt2t | |
55 | 1 2 54 7 | cnmpt21f | |
56 | 53 55 | eqeltrrd | |