Metamath Proof Explorer


Theorem rsp2

Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997)

Ref Expression
Assertion rsp2 xAyBφxAyBφ

Proof

Step Hyp Ref Expression
1 rsp xAyBφxAyBφ
2 rsp yBφyBφ
3 1 2 syl6 xAyBφxAyBφ
4 3 impd xAyBφxAyBφ