Metamath Proof Explorer


Theorem rsp2e

Description: Restricted specialization. (Contributed by FL, 4-Jun-2012) (Proof shortened by Wolf Lammen, 7-Jan-2020)

Ref Expression
Assertion rsp2e xAyBφxAyBφ

Proof

Step Hyp Ref Expression
1 rspe yBφyBφ
2 rspe xAyBφxAyBφ
3 1 2 sylan2 xAyBφxAyBφ
4 3 3impb xAyBφxAyBφ