Description: Restricted specialization. (Contributed by FL, 4-Jun-2012) (Proof shortened by Wolf Lammen, 7-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rsp2e | |- ( ( x e. A /\ y e. B /\ ph ) -> E. x e. A E. y e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe | |- ( ( y e. B /\ ph ) -> E. y e. B ph ) |
|
2 | rspe | |- ( ( x e. A /\ E. y e. B ph ) -> E. x e. A E. y e. B ph ) |
|
3 | 1 2 | sylan2 | |- ( ( x e. A /\ ( y e. B /\ ph ) ) -> E. x e. A E. y e. B ph ) |
4 | 3 | 3impb | |- ( ( x e. A /\ y e. B /\ ph ) -> E. x e. A E. y e. B ph ) |