Metamath Proof Explorer


Theorem qqhucn

Description: The QQHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018)

Ref Expression
Hypotheses qqhucn.b B = Base R
qqhucn.q Q = fld 𝑠
qqhucn.u U = UnifSt Q
qqhucn.v V = metUnif dist R B × B
qqhucn.z Z = ℤMod R
qqhucn.1 φ R NrmRing
qqhucn.2 φ R DivRing
qqhucn.3 φ Z NrmMod
qqhucn.4 φ chr R = 0
Assertion qqhucn φ ℚHom R U uCn V

Proof

Step Hyp Ref Expression
1 qqhucn.b B = Base R
2 qqhucn.q Q = fld 𝑠
3 qqhucn.u U = UnifSt Q
4 qqhucn.v V = metUnif dist R B × B
5 qqhucn.z Z = ℤMod R
6 qqhucn.1 φ R NrmRing
7 qqhucn.2 φ R DivRing
8 qqhucn.3 φ Z NrmMod
9 qqhucn.4 φ chr R = 0
10 eqid / r R = / r R
11 eqid ℤRHom R = ℤRHom R
12 1 10 11 qqhf R DivRing chr R = 0 ℚHom R : B
13 7 9 12 syl2anc φ ℚHom R : B
14 simpr φ e + e +
15 nrgngp R NrmRing R NrmGrp
16 6 15 syl φ R NrmGrp
17 16 ad2antrr φ p q R NrmGrp
18 13 ffvelrnda φ p ℚHom R p B
19 18 adantr φ p q ℚHom R p B
20 13 adantr φ p ℚHom R : B
21 20 ffvelrnda φ p q ℚHom R q B
22 eqid norm R = norm R
23 eqid - R = - R
24 eqid dist R = dist R
25 22 1 23 24 ngpdsr R NrmGrp ℚHom R p B ℚHom R q B ℚHom R p dist R ℚHom R q = norm R ℚHom R q - R ℚHom R p
26 17 19 21 25 syl3anc φ p q ℚHom R p dist R ℚHom R q = norm R ℚHom R q - R ℚHom R p
27 simpr φ p q q
28 simplr φ p q p
29 qsubdrg SubRing fld fld 𝑠 DivRing
30 29 simpli SubRing fld
31 subrgsubg SubRing fld SubGrp fld
32 30 31 ax-mp SubGrp fld
33 cnfldsub = - fld
34 eqid - Q = - Q
35 33 2 34 subgsub SubGrp fld q p q p = q - Q p
36 32 35 mp3an1 q p q p = q - Q p
37 27 28 36 syl2anc φ p q q p = q - Q p
38 37 fveq2d φ p q ℚHom R q p = ℚHom R q - Q p
39 1 10 11 2 qqhghm R DivRing chr R = 0 ℚHom R Q GrpHom R
40 7 9 39 syl2anc φ ℚHom R Q GrpHom R
41 40 ad2antrr φ p q ℚHom R Q GrpHom R
42 2 qrngbas = Base Q
43 42 34 23 ghmsub ℚHom R Q GrpHom R q p ℚHom R q - Q p = ℚHom R q - R ℚHom R p
44 41 27 28 43 syl3anc φ p q ℚHom R q - Q p = ℚHom R q - R ℚHom R p
45 38 44 eqtr2d φ p q ℚHom R q - R ℚHom R p = ℚHom R q p
46 45 fveq2d φ p q norm R ℚHom R q - R ℚHom R p = norm R ℚHom R q p
47 6 7 elind φ R NrmRing DivRing
48 47 ad2antrr φ p q R NrmRing DivRing
49 8 ad2antrr φ p q Z NrmMod
50 9 ad2antrr φ p q chr R = 0
51 qsubcl q p q p
52 27 28 51 syl2anc φ p q q p
53 22 5 qqhnm R NrmRing DivRing Z NrmMod chr R = 0 q p norm R ℚHom R q p = q p
54 48 49 50 52 53 syl31anc φ p q norm R ℚHom R q p = q p
55 26 46 54 3eqtrd φ p q ℚHom R p dist R ℚHom R q = q p
56 19 21 ovresd φ p q ℚHom R p dist R B × B ℚHom R q = ℚHom R p dist R ℚHom R q
57 qsscn
58 57 28 sselid φ p q p
59 57 27 sselid φ p q q
60 eqid abs = abs
61 60 cnmetdval p q p abs q = p q
62 58 59 61 syl2anc φ p q p abs q = p q
63 28 27 ovresd φ p q p abs × q = p abs q
64 59 58 abssubd φ p q q p = p q
65 62 63 64 3eqtr4d φ p q p abs × q = q p
66 55 56 65 3eqtr4rd φ p q p abs × q = ℚHom R p dist R B × B ℚHom R q
67 66 breq1d φ p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
68 67 biimpd φ p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
69 68 ralrimiva φ p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
70 69 ralrimiva φ p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
71 70 adantr φ e + p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
72 breq2 d = e p abs × q < d p abs × q < e
73 72 imbi1d d = e p abs × q < d ℚHom R p dist R B × B ℚHom R q < e p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
74 73 2ralbidv d = e p q p abs × q < d ℚHom R p dist R B × B ℚHom R q < e p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e
75 74 rspcev e + p q p abs × q < e ℚHom R p dist R B × B ℚHom R q < e d + p q p abs × q < d ℚHom R p dist R B × B ℚHom R q < e
76 14 71 75 syl2anc φ e + d + p q p abs × q < d ℚHom R p dist R B × B ℚHom R q < e
77 76 ralrimiva φ e + d + p q p abs × q < d ℚHom R p dist R B × B ℚHom R q < e
78 eqid metUnif abs × = metUnif abs ×
79 0z 0
80 zq 0 0
81 ne0i 0
82 79 80 81 mp2b
83 82 a1i φ
84 drngring R DivRing R Ring
85 eqid 1 R = 1 R
86 1 85 ringidcl R Ring 1 R B
87 ne0i 1 R B B
88 7 84 86 87 4syl φ B
89 cnfldxms fld ∞MetSp
90 qex V
91 ressxms fld ∞MetSp V fld 𝑠 ∞MetSp
92 89 90 91 mp2an fld 𝑠 ∞MetSp
93 2 92 eqeltri Q ∞MetSp
94 cnfldds abs = dist fld
95 2 94 ressds V abs = dist Q
96 90 95 ax-mp abs = dist Q
97 42 96 xmsxmet2 Q ∞MetSp abs × ∞Met
98 93 97 mp1i φ abs × ∞Met
99 xmetpsmet abs × ∞Met abs × PsMet
100 98 99 syl φ abs × PsMet
101 ngpxms R NrmGrp R ∞MetSp
102 1 24 xmsxmet2 R ∞MetSp dist R B × B ∞Met B
103 6 15 101 102 4syl φ dist R B × B ∞Met B
104 xmetpsmet dist R B × B ∞Met B dist R B × B PsMet B
105 103 104 syl φ dist R B × B PsMet B
106 78 4 83 88 100 105 metucn φ ℚHom R metUnif abs × uCn V ℚHom R : B e + d + p q p abs × q < d ℚHom R p dist R B × B ℚHom R q < e
107 13 77 106 mpbir2and φ ℚHom R metUnif abs × uCn V
108 2 fveq2i UnifSt Q = UnifSt fld 𝑠
109 ressuss V UnifSt fld 𝑠 = UnifSt fld 𝑡 ×
110 90 109 ax-mp UnifSt fld 𝑠 = UnifSt fld 𝑡 ×
111 3 108 110 3eqtri U = UnifSt fld 𝑡 ×
112 eqid UnifSt fld = UnifSt fld
113 112 cnflduss UnifSt fld = metUnif abs
114 113 oveq1i UnifSt fld 𝑡 × = metUnif abs 𝑡 ×
115 cnxmet abs ∞Met
116 xmetpsmet abs ∞Met abs PsMet
117 115 116 ax-mp abs PsMet
118 restmetu abs PsMet metUnif abs 𝑡 × = metUnif abs ×
119 82 117 57 118 mp3an metUnif abs 𝑡 × = metUnif abs ×
120 111 114 119 3eqtri U = metUnif abs ×
121 120 a1i φ U = metUnif abs ×
122 121 oveq1d φ U uCn V = metUnif abs × uCn V
123 107 122 eleqtrrd φ ℚHom R U uCn V