Step |
Hyp |
Ref |
Expression |
1 |
|
qqhcn.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qqhcn.j |
|- J = ( TopOpen ` Q ) |
3 |
|
qqhcn.z |
|- Z = ( ZMod ` R ) |
4 |
|
qqhcn.k |
|- K = ( TopOpen ` R ) |
5 |
|
inss2 |
|- ( NrmRing i^i DivRing ) C_ DivRing |
6 |
5
|
sseli |
|- ( R e. ( NrmRing i^i DivRing ) -> R e. DivRing ) |
7 |
6
|
3ad2ant1 |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> R e. DivRing ) |
8 |
|
simp3 |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( chr ` R ) = 0 ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
11 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
12 |
9 10 11
|
qqhf |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> ( Base ` R ) ) |
13 |
7 8 12
|
syl2anc |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> ( Base ` R ) ) |
14 |
|
simpr |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) -> e e. RR+ ) |
15 |
|
qsscn |
|- QQ C_ CC |
16 |
|
simpr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> q e. QQ ) |
17 |
15 16
|
sselid |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> q e. CC ) |
18 |
|
0cn |
|- 0 e. CC |
19 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
20 |
19
|
cnmetdval |
|- ( ( 0 e. CC /\ q e. CC ) -> ( 0 ( abs o. - ) q ) = ( abs ` ( 0 - q ) ) ) |
21 |
18 20
|
mpan |
|- ( q e. CC -> ( 0 ( abs o. - ) q ) = ( abs ` ( 0 - q ) ) ) |
22 |
|
df-neg |
|- -u q = ( 0 - q ) |
23 |
22
|
fveq2i |
|- ( abs ` -u q ) = ( abs ` ( 0 - q ) ) |
24 |
23
|
a1i |
|- ( q e. CC -> ( abs ` -u q ) = ( abs ` ( 0 - q ) ) ) |
25 |
|
absneg |
|- ( q e. CC -> ( abs ` -u q ) = ( abs ` q ) ) |
26 |
21 24 25
|
3eqtr2d |
|- ( q e. CC -> ( 0 ( abs o. - ) q ) = ( abs ` q ) ) |
27 |
17 26
|
syl |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( 0 ( abs o. - ) q ) = ( abs ` q ) ) |
28 |
|
zssq |
|- ZZ C_ QQ |
29 |
|
0z |
|- 0 e. ZZ |
30 |
28 29
|
sselii |
|- 0 e. QQ |
31 |
30
|
a1i |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> 0 e. QQ ) |
32 |
31 16
|
ovresd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( 0 ( abs o. - ) q ) ) |
33 |
|
eqid |
|- ( norm ` R ) = ( norm ` R ) |
34 |
33 3
|
qqhnm |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` q ) ) = ( abs ` q ) ) |
35 |
34
|
adantlr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` q ) ) = ( abs ` q ) ) |
36 |
27 32 35
|
3eqtr4d |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( ( norm ` R ) ` ( ( QQHom ` R ) ` q ) ) ) |
37 |
13
|
ad2antrr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( QQHom ` R ) : QQ --> ( Base ` R ) ) |
38 |
37 31
|
ffvelrnd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` 0 ) e. ( Base ` R ) ) |
39 |
37 16
|
ffvelrnd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` q ) e. ( Base ` R ) ) |
40 |
38 39
|
ovresd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) = ( ( ( QQHom ` R ) ` 0 ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) ) |
41 |
|
inss1 |
|- ( NrmRing i^i DivRing ) C_ NrmRing |
42 |
41
|
sseli |
|- ( R e. ( NrmRing i^i DivRing ) -> R e. NrmRing ) |
43 |
42
|
3ad2ant1 |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> R e. NrmRing ) |
44 |
43
|
ad2antrr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> R e. NrmRing ) |
45 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
46 |
44 45
|
syl |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> R e. NrmGrp ) |
47 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
48 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
49 |
33 9 47 48
|
ngpdsr |
|- ( ( R e. NrmGrp /\ ( ( QQHom ` R ) ` 0 ) e. ( Base ` R ) /\ ( ( QQHom ` R ) ` q ) e. ( Base ` R ) ) -> ( ( ( QQHom ` R ) ` 0 ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` 0 ) ) ) ) |
50 |
46 38 39 49
|
syl3anc |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` 0 ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` 0 ) ) ) ) |
51 |
7
|
ad2antrr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> R e. DivRing ) |
52 |
8
|
ad2antrr |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( chr ` R ) = 0 ) |
53 |
9 10 11
|
qqh0 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
54 |
51 52 53
|
syl2anc |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
55 |
54
|
oveq2d |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` 0 ) ) = ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( 0g ` R ) ) ) |
56 |
|
ngpgrp |
|- ( R e. NrmGrp -> R e. Grp ) |
57 |
46 56
|
syl |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> R e. Grp ) |
58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
59 |
9 58 47
|
grpsubid1 |
|- ( ( R e. Grp /\ ( ( QQHom ` R ) ` q ) e. ( Base ` R ) ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( 0g ` R ) ) = ( ( QQHom ` R ) ` q ) ) |
60 |
57 39 59
|
syl2anc |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( 0g ` R ) ) = ( ( QQHom ` R ) ` q ) ) |
61 |
55 60
|
eqtrd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` 0 ) ) = ( ( QQHom ` R ) ` q ) ) |
62 |
61
|
fveq2d |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` 0 ) ) ) = ( ( norm ` R ) ` ( ( QQHom ` R ) ` q ) ) ) |
63 |
40 50 62
|
3eqtrd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( QQHom ` R ) ` q ) ) ) |
64 |
36 63
|
eqtr4d |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) ) |
65 |
64
|
breq1d |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e <-> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
66 |
65
|
biimpd |
|- ( ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) /\ q e. QQ ) -> ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
67 |
66
|
ralrimiva |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) -> A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
68 |
|
breq2 |
|- ( d = e -> ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d <-> ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e ) ) |
69 |
68
|
rspceaimv |
|- ( ( e e. RR+ /\ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) -> E. d e. RR+ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
70 |
14 67 69
|
syl2anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ e e. RR+ ) -> E. d e. RR+ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
71 |
70
|
ralrimiva |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> A. e e. RR+ E. d e. RR+ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
72 |
|
cnfldxms |
|- CCfld e. *MetSp |
73 |
|
qex |
|- QQ e. _V |
74 |
|
ressxms |
|- ( ( CCfld e. *MetSp /\ QQ e. _V ) -> ( CCfld |`s QQ ) e. *MetSp ) |
75 |
72 73 74
|
mp2an |
|- ( CCfld |`s QQ ) e. *MetSp |
76 |
1 75
|
eqeltri |
|- Q e. *MetSp |
77 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
78 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
79 |
1 78
|
ressds |
|- ( QQ e. _V -> ( abs o. - ) = ( dist ` Q ) ) |
80 |
73 79
|
ax-mp |
|- ( abs o. - ) = ( dist ` Q ) |
81 |
77 80
|
xmsxmet2 |
|- ( Q e. *MetSp -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) ) |
82 |
76 81
|
mp1i |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) ) |
83 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
84 |
42 45 83
|
3syl |
|- ( R e. ( NrmRing i^i DivRing ) -> R e. *MetSp ) |
85 |
84
|
3ad2ant1 |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> R e. *MetSp ) |
86 |
9 48
|
xmsxmet2 |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
87 |
85 86
|
syl |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
88 |
30
|
a1i |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> 0 e. QQ ) |
89 |
80
|
reseq1i |
|- ( ( abs o. - ) |` ( QQ X. QQ ) ) = ( ( dist ` Q ) |` ( QQ X. QQ ) ) |
90 |
2 77 89
|
xmstopn |
|- ( Q e. *MetSp -> J = ( MetOpen ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) ) |
91 |
76 90
|
ax-mp |
|- J = ( MetOpen ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) |
92 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
93 |
91 92
|
metcnp |
|- ( ( ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) /\ ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) /\ 0 e. QQ ) -> ( ( QQHom ` R ) e. ( ( J CnP ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ` 0 ) <-> ( ( QQHom ` R ) : QQ --> ( Base ` R ) /\ A. e e. RR+ E. d e. RR+ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) ) |
94 |
82 87 88 93
|
syl3anc |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) e. ( ( J CnP ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ` 0 ) <-> ( ( QQHom ` R ) : QQ --> ( Base ` R ) /\ A. e e. RR+ E. d e. RR+ A. q e. QQ ( ( 0 ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` 0 ) ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) ) |
95 |
13 71 94
|
mpbir2and |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( ( J CnP ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ` 0 ) ) |
96 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
97 |
4 9 96
|
xmstopn |
|- ( R e. *MetSp -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
98 |
85 97
|
syl |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
99 |
98
|
oveq2d |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( J CnP K ) = ( J CnP ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ) |
100 |
99
|
fveq1d |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( ( J CnP K ) ` 0 ) = ( ( J CnP ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ` 0 ) ) |
101 |
95 100
|
eleqtrrd |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( ( J CnP K ) ` 0 ) ) |
102 |
|
cnfldtgp |
|- CCfld e. TopGrp |
103 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
104 |
103
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
105 |
|
subrgsubg |
|- ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) |
106 |
104 105
|
ax-mp |
|- QQ e. ( SubGrp ` CCfld ) |
107 |
1
|
subgtgp |
|- ( ( CCfld e. TopGrp /\ QQ e. ( SubGrp ` CCfld ) ) -> Q e. TopGrp ) |
108 |
102 106 107
|
mp2an |
|- Q e. TopGrp |
109 |
|
tgptmd |
|- ( Q e. TopGrp -> Q e. TopMnd ) |
110 |
108 109
|
mp1i |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> Q e. TopMnd ) |
111 |
|
nrgtrg |
|- ( R e. NrmRing -> R e. TopRing ) |
112 |
|
trgtmd2 |
|- ( R e. TopRing -> R e. TopMnd ) |
113 |
43 111 112
|
3syl |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> R e. TopMnd ) |
114 |
9 10 11 1
|
qqhghm |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( Q GrpHom R ) ) |
115 |
7 8 114
|
syl2anc |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( Q GrpHom R ) ) |
116 |
77 2 4
|
ghmcnp |
|- ( ( Q e. TopMnd /\ R e. TopMnd /\ ( QQHom ` R ) e. ( Q GrpHom R ) ) -> ( ( QQHom ` R ) e. ( ( J CnP K ) ` 0 ) <-> ( 0 e. QQ /\ ( QQHom ` R ) e. ( J Cn K ) ) ) ) |
117 |
110 113 115 116
|
syl3anc |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) e. ( ( J CnP K ) ` 0 ) <-> ( 0 e. QQ /\ ( QQHom ` R ) e. ( J Cn K ) ) ) ) |
118 |
101 117
|
mpbid |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( 0 e. QQ /\ ( QQHom ` R ) e. ( J Cn K ) ) ) |
119 |
118
|
simprd |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( J Cn K ) ) |