Description: The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qrng.q | |- Q = ( CCfld |`s QQ ) |
|
Assertion | qdrng | |- Q e. DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | |- Q = ( CCfld |`s QQ ) |
|
2 | qsubdrg | |- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
|
3 | 2 | simpri | |- ( CCfld |`s QQ ) e. DivRing |
4 | 1 3 | eqeltri | |- Q e. DivRing |