Metamath Proof Explorer


Theorem isrhmd

Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses isrhmd.b 𝐵 = ( Base ‘ 𝑅 )
isrhmd.o 1 = ( 1r𝑅 )
isrhmd.n 𝑁 = ( 1r𝑆 )
isrhmd.t · = ( .r𝑅 )
isrhmd.u × = ( .r𝑆 )
isrhmd.r ( 𝜑𝑅 ∈ Ring )
isrhmd.s ( 𝜑𝑆 ∈ Ring )
isrhmd.ho ( 𝜑 → ( 𝐹1 ) = 𝑁 )
isrhmd.ht ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) )
isrhmd.c 𝐶 = ( Base ‘ 𝑆 )
isrhmd.p + = ( +g𝑅 )
isrhmd.q = ( +g𝑆 )
isrhmd.f ( 𝜑𝐹 : 𝐵𝐶 )
isrhmd.hp ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
Assertion isrhmd ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 isrhmd.b 𝐵 = ( Base ‘ 𝑅 )
2 isrhmd.o 1 = ( 1r𝑅 )
3 isrhmd.n 𝑁 = ( 1r𝑆 )
4 isrhmd.t · = ( .r𝑅 )
5 isrhmd.u × = ( .r𝑆 )
6 isrhmd.r ( 𝜑𝑅 ∈ Ring )
7 isrhmd.s ( 𝜑𝑆 ∈ Ring )
8 isrhmd.ho ( 𝜑 → ( 𝐹1 ) = 𝑁 )
9 isrhmd.ht ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) )
10 isrhmd.c 𝐶 = ( Base ‘ 𝑆 )
11 isrhmd.p + = ( +g𝑅 )
12 isrhmd.q = ( +g𝑆 )
13 isrhmd.f ( 𝜑𝐹 : 𝐵𝐶 )
14 isrhmd.hp ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
15 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
16 6 15 syl ( 𝜑𝑅 ∈ Grp )
17 ringgrp ( 𝑆 ∈ Ring → 𝑆 ∈ Grp )
18 7 17 syl ( 𝜑𝑆 ∈ Grp )
19 1 10 11 12 16 18 13 14 isghmd ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
20 1 2 3 4 5 6 7 8 9 19 isrhm2d ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )