Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
3 |
1 2
|
xmsxmet |
⊢ ( 𝐾 ∈ ∞MetSp → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
5 |
|
xmetres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
7 |
|
resres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
8 |
|
inxp |
⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) |
9 |
8
|
reseq2i |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
10 |
7 9
|
eqtri |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
11 |
|
eqid |
⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) |
12 |
|
eqid |
⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) |
13 |
11 12
|
ressds |
⊢ ( 𝐴 ∈ 𝑉 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
15 |
|
incom |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) |
16 |
11 1
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
18 |
15 17
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
19 |
18
|
sqxpeqd |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
20 |
14 19
|
reseq12d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
21 |
10 20
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
22 |
18
|
fveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ∞Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
23 |
6 21 22
|
3eltr3d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
24 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
25 |
24 1 2
|
xmstopn |
⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
28 |
|
inss1 |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) |
29 |
|
xpss12 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
30 |
28 28 29
|
mp2an |
⊢ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) |
31 |
|
resabs1 |
⊢ ( ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) ) |
32 |
30 31
|
ax-mp |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
33 |
10 32
|
eqtr4i |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
34 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
35 |
|
eqid |
⊢ ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) |
36 |
33 34 35
|
metrest |
⊢ ( ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
37 |
4 28 36
|
sylancl |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
38 |
27 37
|
eqtrd |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
39 |
|
xmstps |
⊢ ( 𝐾 ∈ ∞MetSp → 𝐾 ∈ TopSp ) |
40 |
1 24
|
tpsuni |
⊢ ( 𝐾 ∈ TopSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
41 |
39 40
|
syl |
⊢ ( 𝐾 ∈ ∞MetSp → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
43 |
42
|
ineq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
44 |
15 43
|
eqtrid |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
46 |
1 24
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
47 |
39 46
|
sylib |
⊢ ( 𝐾 ∈ ∞MetSp → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
48 |
|
eqid |
⊢ ∪ ( TopOpen ‘ 𝐾 ) = ∪ ( TopOpen ‘ 𝐾 ) |
49 |
48
|
restin |
⊢ ( ( ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
50 |
47 49
|
sylan |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( ( TopOpen ‘ 𝐾 ) ↾t ( 𝐴 ∩ ∪ ( TopOpen ‘ 𝐾 ) ) ) ) |
51 |
45 50
|
eqtr4d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) ) |
52 |
21
|
fveq2d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( MetOpen ‘ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
53 |
38 51 52
|
3eqtr3d |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) |
54 |
11 24
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
55 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) |
56 |
|
eqid |
⊢ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
57 |
54 55 56
|
isxms2 |
⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ↔ ( ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ∧ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( MetOpen ‘ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) ) ) |
58 |
23 53 57
|
sylanbrc |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |