Step |
Hyp |
Ref |
Expression |
1 |
|
msxms |
⊢ ( 𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp ) |
2 |
|
ressxms |
⊢ ( ( 𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
6 |
4 5
|
msmet |
⊢ ( 𝐾 ∈ MetSp → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) |
8 |
|
metres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
10 |
|
resres |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) |
11 |
|
inxp |
⊢ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) |
12 |
11
|
reseq2i |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
13 |
10 12
|
eqtri |
⊢ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
14 |
|
eqid |
⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) |
15 |
|
eqid |
⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) |
16 |
14 15
|
ressds |
⊢ ( 𝐴 ∈ 𝑉 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
18 |
|
incom |
⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) |
19 |
14 4
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
21 |
18 20
|
syl5eq |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
22 |
21
|
sqxpeqd |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
23 |
17 22
|
reseq12d |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ 𝐾 ) ↾ ( ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) × ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
24 |
13 23
|
syl5eq |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
25 |
21
|
fveq2d |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( Met ‘ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
26 |
9 24 25
|
3eltr3d |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
27 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
28 |
14 27
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐾 ) ↾t 𝐴 ) = ( TopOpen ‘ ( 𝐾 ↾s 𝐴 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) |
30 |
|
eqid |
⊢ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
31 |
28 29 30
|
isms |
⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ MetSp ↔ ( ( 𝐾 ↾s 𝐴 ) ∈ ∞MetSp ∧ ( ( dist ‘ ( 𝐾 ↾s 𝐴 ) ) ↾ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
32 |
3 26 31
|
sylanbrc |
⊢ ( ( 𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐾 ↾s 𝐴 ) ∈ MetSp ) |