Metamath Proof Explorer


Theorem rrhcn

Description: If the topology of R is Hausdorff, and R is a complete uniform space, then the canonical homomorphism from the real numbers to R is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypotheses rrhf.d 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) )
rrhf.j 𝐽 = ( topGen ‘ ran (,) )
rrhf.b 𝐵 = ( Base ‘ 𝑅 )
rrhf.k 𝐾 = ( TopOpen ‘ 𝑅 )
rrhf.z 𝑍 = ( ℤMod ‘ 𝑅 )
rrhf.1 ( 𝜑𝑅 ∈ DivRing )
rrhf.2 ( 𝜑𝑅 ∈ NrmRing )
rrhf.3 ( 𝜑𝑍 ∈ NrmMod )
rrhf.4 ( 𝜑 → ( chr ‘ 𝑅 ) = 0 )
rrhf.5 ( 𝜑𝑅 ∈ CUnifSp )
rrhf.6 ( 𝜑 → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) )
Assertion rrhcn ( 𝜑 → ( ℝHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 rrhf.d 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) )
2 rrhf.j 𝐽 = ( topGen ‘ ran (,) )
3 rrhf.b 𝐵 = ( Base ‘ 𝑅 )
4 rrhf.k 𝐾 = ( TopOpen ‘ 𝑅 )
5 rrhf.z 𝑍 = ( ℤMod ‘ 𝑅 )
6 rrhf.1 ( 𝜑𝑅 ∈ DivRing )
7 rrhf.2 ( 𝜑𝑅 ∈ NrmRing )
8 rrhf.3 ( 𝜑𝑍 ∈ NrmMod )
9 rrhf.4 ( 𝜑 → ( chr ‘ 𝑅 ) = 0 )
10 rrhf.5 ( 𝜑𝑅 ∈ CUnifSp )
11 rrhf.6 ( 𝜑 → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) )
12 nrgngp ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp )
13 ngpxms ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp )
14 7 12 13 3syl ( 𝜑𝑅 ∈ ∞MetSp )
15 xmstps ( 𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp )
16 14 15 syl ( 𝜑𝑅 ∈ TopSp )
17 2 4 rrhval ( 𝑅 ∈ TopSp → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )
18 16 17 syl ( 𝜑 → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )
19 rebase ℝ = ( Base ‘ ℝfld )
20 retopn ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld )
21 2 20 eqtri 𝐽 = ( TopOpen ‘ ℝfld )
22 eqid ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ℝfld )
23 df-refld fld = ( ℂflds ℝ )
24 23 oveq1i ( ℝflds ℚ ) = ( ( ℂflds ℝ ) ↾s ℚ )
25 reex ℝ ∈ V
26 qssre ℚ ⊆ ℝ
27 ressabs ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ( ℂflds ℝ ) ↾s ℚ ) = ( ℂflds ℚ ) )
28 25 26 27 mp2an ( ( ℂflds ℝ ) ↾s ℚ ) = ( ℂflds ℚ )
29 24 28 eqtr2i ( ℂflds ℚ ) = ( ℝflds ℚ )
30 29 fveq2i ( UnifSt ‘ ( ℂflds ℚ ) ) = ( UnifSt ‘ ( ℝflds ℚ ) )
31 eqid ( UnifSt ‘ 𝑅 ) = ( UnifSt ‘ 𝑅 )
32 recms fld ∈ CMetSp
33 cmsms ( ℝfld ∈ CMetSp → ℝfld ∈ MetSp )
34 mstps ( ℝfld ∈ MetSp → ℝfld ∈ TopSp )
35 32 33 34 mp2b fld ∈ TopSp
36 35 a1i ( 𝜑 → ℝfld ∈ TopSp )
37 recusp fld ∈ CUnifSp
38 cuspusp ( ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp )
39 37 38 mp1i ( 𝜑 → ℝfld ∈ UnifSp )
40 4 3 1 xmstopn ( 𝑅 ∈ ∞MetSp → 𝐾 = ( MetOpen ‘ 𝐷 ) )
41 14 40 syl ( 𝜑𝐾 = ( MetOpen ‘ 𝐷 ) )
42 3 1 xmsxmet ( 𝑅 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) )
43 eqid ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 )
44 43 methaus ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ Haus )
45 14 42 44 3syl ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ Haus )
46 41 45 eqeltrd ( 𝜑𝐾 ∈ Haus )
47 26 a1i ( 𝜑 → ℚ ⊆ ℝ )
48 eqid ( ℂflds ℚ ) = ( ℂflds ℚ )
49 eqid ( UnifSt ‘ ( ℂflds ℚ ) ) = ( UnifSt ‘ ( ℂflds ℚ ) )
50 1 fveq2i ( metUnif ‘ 𝐷 ) = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) )
51 3 48 49 50 5 7 6 8 9 qqhucn ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( ( UnifSt ‘ ( ℂflds ℚ ) ) Cnu ( metUnif ‘ 𝐷 ) ) )
52 11 eqcomd ( 𝜑 → ( metUnif ‘ 𝐷 ) = ( UnifSt ‘ 𝑅 ) )
53 52 oveq2d ( 𝜑 → ( ( UnifSt ‘ ( ℂflds ℚ ) ) Cnu ( metUnif ‘ 𝐷 ) ) = ( ( UnifSt ‘ ( ℂflds ℚ ) ) Cnu ( UnifSt ‘ 𝑅 ) ) )
54 51 53 eleqtrd ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( ( UnifSt ‘ ( ℂflds ℚ ) ) Cnu ( UnifSt ‘ 𝑅 ) ) )
55 2 fveq2i ( cls ‘ 𝐽 ) = ( cls ‘ ( topGen ‘ ran (,) ) )
56 55 fveq1i ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ )
57 qdensere ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ
58 56 57 eqtri ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ℝ
59 58 a1i ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ℝ )
60 19 3 21 4 22 30 31 36 39 16 10 46 47 54 59 ucnextcn ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ∈ ( 𝐽 Cn 𝐾 ) )
61 18 60 eqeltrd ( 𝜑 → ( ℝHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) )