Step |
Hyp |
Ref |
Expression |
1 |
|
rrhf.d |
⊢ 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) |
2 |
|
rrhf.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
3 |
|
rrhf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
rrhf.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑅 ) |
5 |
|
rrhf.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
6 |
|
rrhf.1 |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
7 |
|
rrhf.2 |
⊢ ( 𝜑 → 𝑅 ∈ NrmRing ) |
8 |
|
rrhf.3 |
⊢ ( 𝜑 → 𝑍 ∈ NrmMod ) |
9 |
|
rrhf.4 |
⊢ ( 𝜑 → ( chr ‘ 𝑅 ) = 0 ) |
10 |
|
rrhf.5 |
⊢ ( 𝜑 → 𝑅 ∈ CUnifSp ) |
11 |
|
rrhf.6 |
⊢ ( 𝜑 → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) |
12 |
|
nrgngp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |
13 |
|
ngpxms |
⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp ) |
14 |
7 12 13
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) |
15 |
|
xmstps |
⊢ ( 𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ TopSp ) |
17 |
2 4
|
rrhval |
⊢ ( 𝑅 ∈ TopSp → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ) |
19 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
20 |
|
retopn |
⊢ ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld ) |
21 |
2 20
|
eqtri |
⊢ 𝐽 = ( TopOpen ‘ ℝfld ) |
22 |
|
eqid |
⊢ ( UnifSt ‘ ℝfld ) = ( UnifSt ‘ ℝfld ) |
23 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
24 |
23
|
oveq1i |
⊢ ( ℝfld ↾s ℚ ) = ( ( ℂfld ↾s ℝ ) ↾s ℚ ) |
25 |
|
reex |
⊢ ℝ ∈ V |
26 |
|
qssre |
⊢ ℚ ⊆ ℝ |
27 |
|
ressabs |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ( ℂfld ↾s ℝ ) ↾s ℚ ) = ( ℂfld ↾s ℚ ) ) |
28 |
25 26 27
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
29 |
24 28
|
eqtr2i |
⊢ ( ℂfld ↾s ℚ ) = ( ℝfld ↾s ℚ ) |
30 |
29
|
fveq2i |
⊢ ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) = ( UnifSt ‘ ( ℝfld ↾s ℚ ) ) |
31 |
|
eqid |
⊢ ( UnifSt ‘ 𝑅 ) = ( UnifSt ‘ 𝑅 ) |
32 |
|
recms |
⊢ ℝfld ∈ CMetSp |
33 |
|
cmsms |
⊢ ( ℝfld ∈ CMetSp → ℝfld ∈ MetSp ) |
34 |
|
mstps |
⊢ ( ℝfld ∈ MetSp → ℝfld ∈ TopSp ) |
35 |
32 33 34
|
mp2b |
⊢ ℝfld ∈ TopSp |
36 |
35
|
a1i |
⊢ ( 𝜑 → ℝfld ∈ TopSp ) |
37 |
|
recusp |
⊢ ℝfld ∈ CUnifSp |
38 |
|
cuspusp |
⊢ ( ℝfld ∈ CUnifSp → ℝfld ∈ UnifSp ) |
39 |
37 38
|
mp1i |
⊢ ( 𝜑 → ℝfld ∈ UnifSp ) |
40 |
4 3 1
|
xmstopn |
⊢ ( 𝑅 ∈ ∞MetSp → 𝐾 = ( MetOpen ‘ 𝐷 ) ) |
41 |
14 40
|
syl |
⊢ ( 𝜑 → 𝐾 = ( MetOpen ‘ 𝐷 ) ) |
42 |
3 1
|
xmsxmet |
⊢ ( 𝑅 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
43 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
44 |
43
|
methaus |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ 𝐷 ) ∈ Haus ) |
45 |
14 42 44
|
3syl |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ∈ Haus ) |
46 |
41 45
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
47 |
26
|
a1i |
⊢ ( 𝜑 → ℚ ⊆ ℝ ) |
48 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
49 |
|
eqid |
⊢ ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) = ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) |
50 |
1
|
fveq2i |
⊢ ( metUnif ‘ 𝐷 ) = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
51 |
3 48 49 50 5 7 6 8 9
|
qqhucn |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) Cnu ( metUnif ‘ 𝐷 ) ) ) |
52 |
11
|
eqcomd |
⊢ ( 𝜑 → ( metUnif ‘ 𝐷 ) = ( UnifSt ‘ 𝑅 ) ) |
53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) Cnu ( metUnif ‘ 𝐷 ) ) = ( ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) Cnu ( UnifSt ‘ 𝑅 ) ) ) |
54 |
51 53
|
eleqtrd |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) Cnu ( UnifSt ‘ 𝑅 ) ) ) |
55 |
2
|
fveq2i |
⊢ ( cls ‘ 𝐽 ) = ( cls ‘ ( topGen ‘ ran (,) ) ) |
56 |
55
|
fveq1i |
⊢ ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) |
57 |
|
qdensere |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |
58 |
56 57
|
eqtri |
⊢ ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ℝ |
59 |
58
|
a1i |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ℚ ) = ℝ ) |
60 |
19 3 21 4 22 30 31 36 39 16 10 46 47 54 59
|
ucnextcn |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
61 |
18 60
|
eqeltrd |
⊢ ( 𝜑 → ( ℝHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) ) |