Step |
Hyp |
Ref |
Expression |
1 |
|
rrhf.d |
β’ π· = ( ( dist β π
) βΎ ( π΅ Γ π΅ ) ) |
2 |
|
rrhf.j |
β’ π½ = ( topGen β ran (,) ) |
3 |
|
rrhf.b |
β’ π΅ = ( Base β π
) |
4 |
|
rrhf.k |
β’ πΎ = ( TopOpen β π
) |
5 |
|
rrhf.z |
β’ π = ( β€Mod β π
) |
6 |
|
rrhf.1 |
β’ ( π β π
β DivRing ) |
7 |
|
rrhf.2 |
β’ ( π β π
β NrmRing ) |
8 |
|
rrhf.3 |
β’ ( π β π β NrmMod ) |
9 |
|
rrhf.4 |
β’ ( π β ( chr β π
) = 0 ) |
10 |
|
rrhf.5 |
β’ ( π β π
β CUnifSp ) |
11 |
|
rrhf.6 |
β’ ( π β ( UnifSt β π
) = ( metUnif β π· ) ) |
12 |
|
eqid |
β’ ( topGen β ran (,) ) = ( topGen β ran (,) ) |
13 |
1 12 3 4 5 6 7 8 9 10 11
|
rrhcn |
β’ ( π β ( βHom β π
) β ( ( topGen β ran (,) ) Cn πΎ ) ) |
14 |
|
uniretop |
β’ β = βͺ ( topGen β ran (,) ) |
15 |
|
eqid |
β’ βͺ πΎ = βͺ πΎ |
16 |
14 15
|
cnf |
β’ ( ( βHom β π
) β ( ( topGen β ran (,) ) Cn πΎ ) β ( βHom β π
) : β βΆ βͺ πΎ ) |
17 |
13 16
|
syl |
β’ ( π β ( βHom β π
) : β βΆ βͺ πΎ ) |
18 |
|
nrgngp |
β’ ( π
β NrmRing β π
β NrmGrp ) |
19 |
|
ngpxms |
β’ ( π
β NrmGrp β π
β βMetSp ) |
20 |
7 18 19
|
3syl |
β’ ( π β π
β βMetSp ) |
21 |
|
xmstps |
β’ ( π
β βMetSp β π
β TopSp ) |
22 |
3 4
|
tpsuni |
β’ ( π
β TopSp β π΅ = βͺ πΎ ) |
23 |
20 21 22
|
3syl |
β’ ( π β π΅ = βͺ πΎ ) |
24 |
23
|
feq3d |
β’ ( π β ( ( βHom β π
) : β βΆ π΅ β ( βHom β π
) : β βΆ βͺ πΎ ) ) |
25 |
17 24
|
mpbird |
β’ ( π β ( βHom β π
) : β βΆ π΅ ) |