Metamath Proof Explorer


Theorem rrhf

Description: If the topology of R is Hausdorff, Cauchy sequences have at most one limit, i.e. the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-Nov-2017)

Ref Expression
Hypotheses rrhf.d ⊒ 𝐷 = ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝐡 Γ— 𝐡 ) )
rrhf.j ⊒ 𝐽 = ( topGen β€˜ ran (,) )
rrhf.b ⊒ 𝐡 = ( Base β€˜ 𝑅 )
rrhf.k ⊒ 𝐾 = ( TopOpen β€˜ 𝑅 )
rrhf.z ⊒ 𝑍 = ( β„€Mod β€˜ 𝑅 )
rrhf.1 ⊒ ( πœ‘ β†’ 𝑅 ∈ DivRing )
rrhf.2 ⊒ ( πœ‘ β†’ 𝑅 ∈ NrmRing )
rrhf.3 ⊒ ( πœ‘ β†’ 𝑍 ∈ NrmMod )
rrhf.4 ⊒ ( πœ‘ β†’ ( chr β€˜ 𝑅 ) = 0 )
rrhf.5 ⊒ ( πœ‘ β†’ 𝑅 ∈ CUnifSp )
rrhf.6 ⊒ ( πœ‘ β†’ ( UnifSt β€˜ 𝑅 ) = ( metUnif β€˜ 𝐷 ) )
Assertion rrhf ( πœ‘ β†’ ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ 𝐡 )

Proof

Step Hyp Ref Expression
1 rrhf.d ⊒ 𝐷 = ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝐡 Γ— 𝐡 ) )
2 rrhf.j ⊒ 𝐽 = ( topGen β€˜ ran (,) )
3 rrhf.b ⊒ 𝐡 = ( Base β€˜ 𝑅 )
4 rrhf.k ⊒ 𝐾 = ( TopOpen β€˜ 𝑅 )
5 rrhf.z ⊒ 𝑍 = ( β„€Mod β€˜ 𝑅 )
6 rrhf.1 ⊒ ( πœ‘ β†’ 𝑅 ∈ DivRing )
7 rrhf.2 ⊒ ( πœ‘ β†’ 𝑅 ∈ NrmRing )
8 rrhf.3 ⊒ ( πœ‘ β†’ 𝑍 ∈ NrmMod )
9 rrhf.4 ⊒ ( πœ‘ β†’ ( chr β€˜ 𝑅 ) = 0 )
10 rrhf.5 ⊒ ( πœ‘ β†’ 𝑅 ∈ CUnifSp )
11 rrhf.6 ⊒ ( πœ‘ β†’ ( UnifSt β€˜ 𝑅 ) = ( metUnif β€˜ 𝐷 ) )
12 eqid ⊒ ( topGen β€˜ ran (,) ) = ( topGen β€˜ ran (,) )
13 1 12 3 4 5 6 7 8 9 10 11 rrhcn ⊒ ( πœ‘ β†’ ( ℝHom β€˜ 𝑅 ) ∈ ( ( topGen β€˜ ran (,) ) Cn 𝐾 ) )
14 uniretop ⊒ ℝ = βˆͺ ( topGen β€˜ ran (,) )
15 eqid ⊒ βˆͺ 𝐾 = βˆͺ 𝐾
16 14 15 cnf ⊒ ( ( ℝHom β€˜ 𝑅 ) ∈ ( ( topGen β€˜ ran (,) ) Cn 𝐾 ) β†’ ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ βˆͺ 𝐾 )
17 13 16 syl ⊒ ( πœ‘ β†’ ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ βˆͺ 𝐾 )
18 nrgngp ⊒ ( 𝑅 ∈ NrmRing β†’ 𝑅 ∈ NrmGrp )
19 ngpxms ⊒ ( 𝑅 ∈ NrmGrp β†’ 𝑅 ∈ ∞MetSp )
20 7 18 19 3syl ⊒ ( πœ‘ β†’ 𝑅 ∈ ∞MetSp )
21 xmstps ⊒ ( 𝑅 ∈ ∞MetSp β†’ 𝑅 ∈ TopSp )
22 3 4 tpsuni ⊒ ( 𝑅 ∈ TopSp β†’ 𝐡 = βˆͺ 𝐾 )
23 20 21 22 3syl ⊒ ( πœ‘ β†’ 𝐡 = βˆͺ 𝐾 )
24 23 feq3d ⊒ ( πœ‘ β†’ ( ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ 𝐡 ↔ ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ βˆͺ 𝐾 ) )
25 17 24 mpbird ⊒ ( πœ‘ β†’ ( ℝHom β€˜ 𝑅 ) : ℝ ⟢ 𝐡 )