| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crrext |
⊢ ℝExt |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cnrg |
⊢ NrmRing |
| 3 |
|
cdr |
⊢ DivRing |
| 4 |
2 3
|
cin |
⊢ ( NrmRing ∩ DivRing ) |
| 5 |
|
czlm |
⊢ ℤMod |
| 6 |
1
|
cv |
⊢ 𝑟 |
| 7 |
6 5
|
cfv |
⊢ ( ℤMod ‘ 𝑟 ) |
| 8 |
|
cnlm |
⊢ NrmMod |
| 9 |
7 8
|
wcel |
⊢ ( ℤMod ‘ 𝑟 ) ∈ NrmMod |
| 10 |
|
cchr |
⊢ chr |
| 11 |
6 10
|
cfv |
⊢ ( chr ‘ 𝑟 ) |
| 12 |
|
cc0 |
⊢ 0 |
| 13 |
11 12
|
wceq |
⊢ ( chr ‘ 𝑟 ) = 0 |
| 14 |
9 13
|
wa |
⊢ ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) |
| 15 |
|
ccusp |
⊢ CUnifSp |
| 16 |
6 15
|
wcel |
⊢ 𝑟 ∈ CUnifSp |
| 17 |
|
cuss |
⊢ UnifSt |
| 18 |
6 17
|
cfv |
⊢ ( UnifSt ‘ 𝑟 ) |
| 19 |
|
cmetu |
⊢ metUnif |
| 20 |
|
cds |
⊢ dist |
| 21 |
6 20
|
cfv |
⊢ ( dist ‘ 𝑟 ) |
| 22 |
|
cbs |
⊢ Base |
| 23 |
6 22
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 24 |
23 23
|
cxp |
⊢ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) |
| 25 |
21 24
|
cres |
⊢ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) |
| 26 |
25 19
|
cfv |
⊢ ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) |
| 27 |
18 26
|
wceq |
⊢ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) |
| 28 |
16 27
|
wa |
⊢ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) |
| 29 |
14 28
|
wa |
⊢ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) |
| 30 |
29 1 4
|
crab |
⊢ { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) } |
| 31 |
0 30
|
wceq |
⊢ ℝExt = { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) } |