Metamath Proof Explorer


Definition df-rrext

Description: Define the class of extensions of RR . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of RR into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step ( ZZ , QQ and RR ). It would be interesting see if this is formally treated in the literature. See isrrext for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion df-rrext ℝExt = { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrext ℝExt
1 vr 𝑟
2 cnrg NrmRing
3 cdr DivRing
4 2 3 cin ( NrmRing ∩ DivRing )
5 czlm ℤMod
6 1 cv 𝑟
7 6 5 cfv ( ℤMod ‘ 𝑟 )
8 cnlm NrmMod
9 7 8 wcel ( ℤMod ‘ 𝑟 ) ∈ NrmMod
10 cchr chr
11 6 10 cfv ( chr ‘ 𝑟 )
12 cc0 0
13 11 12 wceq ( chr ‘ 𝑟 ) = 0
14 9 13 wa ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 )
15 ccusp CUnifSp
16 6 15 wcel 𝑟 ∈ CUnifSp
17 cuss UnifSt
18 6 17 cfv ( UnifSt ‘ 𝑟 )
19 cmetu metUnif
20 cds dist
21 6 20 cfv ( dist ‘ 𝑟 )
22 cbs Base
23 6 22 cfv ( Base ‘ 𝑟 )
24 23 23 cxp ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) )
25 21 24 cres ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) )
26 25 19 cfv ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) )
27 18 26 wceq ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) )
28 16 27 wa ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) )
29 14 28 wa ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) )
30 29 1 4 crab { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) }
31 0 30 wceq ℝExt = { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) }