Step |
Hyp |
Ref |
Expression |
0 |
|
crrext |
⊢ ℝExt |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cnrg |
⊢ NrmRing |
3 |
|
cdr |
⊢ DivRing |
4 |
2 3
|
cin |
⊢ ( NrmRing ∩ DivRing ) |
5 |
|
czlm |
⊢ ℤMod |
6 |
1
|
cv |
⊢ 𝑟 |
7 |
6 5
|
cfv |
⊢ ( ℤMod ‘ 𝑟 ) |
8 |
|
cnlm |
⊢ NrmMod |
9 |
7 8
|
wcel |
⊢ ( ℤMod ‘ 𝑟 ) ∈ NrmMod |
10 |
|
cchr |
⊢ chr |
11 |
6 10
|
cfv |
⊢ ( chr ‘ 𝑟 ) |
12 |
|
cc0 |
⊢ 0 |
13 |
11 12
|
wceq |
⊢ ( chr ‘ 𝑟 ) = 0 |
14 |
9 13
|
wa |
⊢ ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) |
15 |
|
ccusp |
⊢ CUnifSp |
16 |
6 15
|
wcel |
⊢ 𝑟 ∈ CUnifSp |
17 |
|
cuss |
⊢ UnifSt |
18 |
6 17
|
cfv |
⊢ ( UnifSt ‘ 𝑟 ) |
19 |
|
cmetu |
⊢ metUnif |
20 |
|
cds |
⊢ dist |
21 |
6 20
|
cfv |
⊢ ( dist ‘ 𝑟 ) |
22 |
|
cbs |
⊢ Base |
23 |
6 22
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
24 |
23 23
|
cxp |
⊢ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) |
25 |
21 24
|
cres |
⊢ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) |
26 |
25 19
|
cfv |
⊢ ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) |
27 |
18 26
|
wceq |
⊢ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) |
28 |
16 27
|
wa |
⊢ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) |
29 |
14 28
|
wa |
⊢ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) |
30 |
29 1 4
|
crab |
⊢ { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) } |
31 |
0 30
|
wceq |
⊢ ℝExt = { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) } |