Step |
Hyp |
Ref |
Expression |
0 |
|
crrext |
|- RRExt |
1 |
|
vr |
|- r |
2 |
|
cnrg |
|- NrmRing |
3 |
|
cdr |
|- DivRing |
4 |
2 3
|
cin |
|- ( NrmRing i^i DivRing ) |
5 |
|
czlm |
|- ZMod |
6 |
1
|
cv |
|- r |
7 |
6 5
|
cfv |
|- ( ZMod ` r ) |
8 |
|
cnlm |
|- NrmMod |
9 |
7 8
|
wcel |
|- ( ZMod ` r ) e. NrmMod |
10 |
|
cchr |
|- chr |
11 |
6 10
|
cfv |
|- ( chr ` r ) |
12 |
|
cc0 |
|- 0 |
13 |
11 12
|
wceq |
|- ( chr ` r ) = 0 |
14 |
9 13
|
wa |
|- ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) |
15 |
|
ccusp |
|- CUnifSp |
16 |
6 15
|
wcel |
|- r e. CUnifSp |
17 |
|
cuss |
|- UnifSt |
18 |
6 17
|
cfv |
|- ( UnifSt ` r ) |
19 |
|
cmetu |
|- metUnif |
20 |
|
cds |
|- dist |
21 |
6 20
|
cfv |
|- ( dist ` r ) |
22 |
|
cbs |
|- Base |
23 |
6 22
|
cfv |
|- ( Base ` r ) |
24 |
23 23
|
cxp |
|- ( ( Base ` r ) X. ( Base ` r ) ) |
25 |
21 24
|
cres |
|- ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) |
26 |
25 19
|
cfv |
|- ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) |
27 |
18 26
|
wceq |
|- ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) |
28 |
16 27
|
wa |
|- ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) |
29 |
14 28
|
wa |
|- ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) |
30 |
29 1 4
|
crab |
|- { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) } |
31 |
0 30
|
wceq |
|- RRExt = { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) } |