Metamath Proof Explorer


Definition df-rrext

Description: Define the class of extensions of RR . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of RR into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step ( ZZ , QQ and RR ). It would be interesting see if this is formally treated in the literature. See isrrext for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion df-rrext
|- RRExt = { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrext
 |-  RRExt
1 vr
 |-  r
2 cnrg
 |-  NrmRing
3 cdr
 |-  DivRing
4 2 3 cin
 |-  ( NrmRing i^i DivRing )
5 czlm
 |-  ZMod
6 1 cv
 |-  r
7 6 5 cfv
 |-  ( ZMod ` r )
8 cnlm
 |-  NrmMod
9 7 8 wcel
 |-  ( ZMod ` r ) e. NrmMod
10 cchr
 |-  chr
11 6 10 cfv
 |-  ( chr ` r )
12 cc0
 |-  0
13 11 12 wceq
 |-  ( chr ` r ) = 0
14 9 13 wa
 |-  ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 )
15 ccusp
 |-  CUnifSp
16 6 15 wcel
 |-  r e. CUnifSp
17 cuss
 |-  UnifSt
18 6 17 cfv
 |-  ( UnifSt ` r )
19 cmetu
 |-  metUnif
20 cds
 |-  dist
21 6 20 cfv
 |-  ( dist ` r )
22 cbs
 |-  Base
23 6 22 cfv
 |-  ( Base ` r )
24 23 23 cxp
 |-  ( ( Base ` r ) X. ( Base ` r ) )
25 21 24 cres
 |-  ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) )
26 25 19 cfv
 |-  ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) )
27 18 26 wceq
 |-  ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) )
28 16 27 wa
 |-  ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) )
29 14 28 wa
 |-  ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) )
30 29 1 4 crab
 |-  { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) }
31 0 30 wceq
 |-  RRExt = { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) }