Step |
Hyp |
Ref |
Expression |
1 |
|
isrrext.b |
|- B = ( Base ` R ) |
2 |
|
isrrext.v |
|- D = ( ( dist ` R ) |` ( B X. B ) ) |
3 |
|
isrrext.z |
|- Z = ( ZMod ` R ) |
4 |
|
elin |
|- ( R e. ( NrmRing i^i DivRing ) <-> ( R e. NrmRing /\ R e. DivRing ) ) |
5 |
4
|
anbi1i |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ ( ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) ) |
6 |
|
fveq2 |
|- ( r = R -> ( ZMod ` r ) = ( ZMod ` R ) ) |
7 |
6
|
eleq1d |
|- ( r = R -> ( ( ZMod ` r ) e. NrmMod <-> ( ZMod ` R ) e. NrmMod ) ) |
8 |
3
|
eleq1i |
|- ( Z e. NrmMod <-> ( ZMod ` R ) e. NrmMod ) |
9 |
7 8
|
bitr4di |
|- ( r = R -> ( ( ZMod ` r ) e. NrmMod <-> Z e. NrmMod ) ) |
10 |
|
fveqeq2 |
|- ( r = R -> ( ( chr ` r ) = 0 <-> ( chr ` R ) = 0 ) ) |
11 |
9 10
|
anbi12d |
|- ( r = R -> ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) <-> ( Z e. NrmMod /\ ( chr ` R ) = 0 ) ) ) |
12 |
|
eleq1 |
|- ( r = R -> ( r e. CUnifSp <-> R e. CUnifSp ) ) |
13 |
|
fveq2 |
|- ( r = R -> ( UnifSt ` r ) = ( UnifSt ` R ) ) |
14 |
|
fveq2 |
|- ( r = R -> ( dist ` r ) = ( dist ` R ) ) |
15 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
16 |
15 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
17 |
16
|
sqxpeqd |
|- ( r = R -> ( ( Base ` r ) X. ( Base ` r ) ) = ( B X. B ) ) |
18 |
14 17
|
reseq12d |
|- ( r = R -> ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) = ( ( dist ` R ) |` ( B X. B ) ) ) |
19 |
18 2
|
eqtr4di |
|- ( r = R -> ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) = D ) |
20 |
19
|
fveq2d |
|- ( r = R -> ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) = ( metUnif ` D ) ) |
21 |
13 20
|
eqeq12d |
|- ( r = R -> ( ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) <-> ( UnifSt ` R ) = ( metUnif ` D ) ) ) |
22 |
12 21
|
anbi12d |
|- ( r = R -> ( ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) <-> ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) |
23 |
11 22
|
anbi12d |
|- ( r = R -> ( ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) <-> ( ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) ) |
24 |
|
df-rrext |
|- RRExt = { r e. ( NrmRing i^i DivRing ) | ( ( ( ZMod ` r ) e. NrmMod /\ ( chr ` r ) = 0 ) /\ ( r e. CUnifSp /\ ( UnifSt ` r ) = ( metUnif ` ( ( dist ` r ) |` ( ( Base ` r ) X. ( Base ` r ) ) ) ) ) ) } |
25 |
23 24
|
elrab2 |
|- ( R e. RRExt <-> ( R e. ( NrmRing i^i DivRing ) /\ ( ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) ) |
26 |
|
3anass |
|- ( ( ( R e. NrmRing /\ R e. DivRing ) /\ ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) ) |
27 |
5 25 26
|
3bitr4i |
|- ( R e. RRExt <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) |