Step |
Hyp |
Ref |
Expression |
1 |
|
isrrext.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isrrext.v |
⊢ 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) |
3 |
|
isrrext.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
4 |
|
elin |
⊢ ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ↔ ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ ( ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ℤMod ‘ 𝑟 ) = ( ℤMod ‘ 𝑅 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ↔ ( ℤMod ‘ 𝑅 ) ∈ NrmMod ) ) |
8 |
3
|
eleq1i |
⊢ ( 𝑍 ∈ NrmMod ↔ ( ℤMod ‘ 𝑅 ) ∈ NrmMod ) |
9 |
7 8
|
bitr4di |
⊢ ( 𝑟 = 𝑅 → ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ↔ 𝑍 ∈ NrmMod ) ) |
10 |
|
fveqeq2 |
⊢ ( 𝑟 = 𝑅 → ( ( chr ‘ 𝑟 ) = 0 ↔ ( chr ‘ 𝑅 ) = 0 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ↔ ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp ) ) |
13 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( UnifSt ‘ 𝑟 ) = ( UnifSt ‘ 𝑅 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
16 |
15 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
17 |
16
|
sqxpeqd |
⊢ ( 𝑟 = 𝑅 → ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) = ( 𝐵 × 𝐵 ) ) |
18 |
14 17
|
reseq12d |
⊢ ( 𝑟 = 𝑅 → ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) = 𝐷 ) |
20 |
19
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) = ( metUnif ‘ 𝐷 ) ) |
21 |
13 20
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ↔ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) |
22 |
12 21
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ↔ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) |
23 |
11 22
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) ↔ ( ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) ) |
24 |
|
df-rrext |
⊢ ℝExt = { 𝑟 ∈ ( NrmRing ∩ DivRing ) ∣ ( ( ( ℤMod ‘ 𝑟 ) ∈ NrmMod ∧ ( chr ‘ 𝑟 ) = 0 ) ∧ ( 𝑟 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑟 ) = ( metUnif ‘ ( ( dist ‘ 𝑟 ) ↾ ( ( Base ‘ 𝑟 ) × ( Base ‘ 𝑟 ) ) ) ) ) ) } |
25 |
23 24
|
elrab2 |
⊢ ( 𝑅 ∈ ℝExt ↔ ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ ( ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) ) |
26 |
|
3anass |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) ) |
27 |
5 25 26
|
3bitr4i |
⊢ ( 𝑅 ∈ ℝExt ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) |