Step |
Hyp |
Ref |
Expression |
1 |
|
rrhf.d |
|- D = ( ( dist ` R ) |` ( B X. B ) ) |
2 |
|
rrhf.j |
|- J = ( topGen ` ran (,) ) |
3 |
|
rrhf.b |
|- B = ( Base ` R ) |
4 |
|
rrhf.k |
|- K = ( TopOpen ` R ) |
5 |
|
rrhf.z |
|- Z = ( ZMod ` R ) |
6 |
|
rrhf.1 |
|- ( ph -> R e. DivRing ) |
7 |
|
rrhf.2 |
|- ( ph -> R e. NrmRing ) |
8 |
|
rrhf.3 |
|- ( ph -> Z e. NrmMod ) |
9 |
|
rrhf.4 |
|- ( ph -> ( chr ` R ) = 0 ) |
10 |
|
rrhf.5 |
|- ( ph -> R e. CUnifSp ) |
11 |
|
rrhf.6 |
|- ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) ) |
12 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
13 |
1 12 3 4 5 6 7 8 9 10 11
|
rrhcn |
|- ( ph -> ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) ) |
14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
15 |
|
eqid |
|- U. K = U. K |
16 |
14 15
|
cnf |
|- ( ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) -> ( RRHom ` R ) : RR --> U. K ) |
17 |
13 16
|
syl |
|- ( ph -> ( RRHom ` R ) : RR --> U. K ) |
18 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
19 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
20 |
7 18 19
|
3syl |
|- ( ph -> R e. *MetSp ) |
21 |
|
xmstps |
|- ( R e. *MetSp -> R e. TopSp ) |
22 |
3 4
|
tpsuni |
|- ( R e. TopSp -> B = U. K ) |
23 |
20 21 22
|
3syl |
|- ( ph -> B = U. K ) |
24 |
23
|
feq3d |
|- ( ph -> ( ( RRHom ` R ) : RR --> B <-> ( RRHom ` R ) : RR --> U. K ) ) |
25 |
17 24
|
mpbird |
|- ( ph -> ( RRHom ` R ) : RR --> B ) |