Metamath Proof Explorer


Theorem rrhf

Description: If the topology of R is Hausdorff, Cauchy sequences have at most one limit, i.e. the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-Nov-2017)

Ref Expression
Hypotheses rrhf.d
|- D = ( ( dist ` R ) |` ( B X. B ) )
rrhf.j
|- J = ( topGen ` ran (,) )
rrhf.b
|- B = ( Base ` R )
rrhf.k
|- K = ( TopOpen ` R )
rrhf.z
|- Z = ( ZMod ` R )
rrhf.1
|- ( ph -> R e. DivRing )
rrhf.2
|- ( ph -> R e. NrmRing )
rrhf.3
|- ( ph -> Z e. NrmMod )
rrhf.4
|- ( ph -> ( chr ` R ) = 0 )
rrhf.5
|- ( ph -> R e. CUnifSp )
rrhf.6
|- ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) )
Assertion rrhf
|- ( ph -> ( RRHom ` R ) : RR --> B )

Proof

Step Hyp Ref Expression
1 rrhf.d
 |-  D = ( ( dist ` R ) |` ( B X. B ) )
2 rrhf.j
 |-  J = ( topGen ` ran (,) )
3 rrhf.b
 |-  B = ( Base ` R )
4 rrhf.k
 |-  K = ( TopOpen ` R )
5 rrhf.z
 |-  Z = ( ZMod ` R )
6 rrhf.1
 |-  ( ph -> R e. DivRing )
7 rrhf.2
 |-  ( ph -> R e. NrmRing )
8 rrhf.3
 |-  ( ph -> Z e. NrmMod )
9 rrhf.4
 |-  ( ph -> ( chr ` R ) = 0 )
10 rrhf.5
 |-  ( ph -> R e. CUnifSp )
11 rrhf.6
 |-  ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) )
12 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
13 1 12 3 4 5 6 7 8 9 10 11 rrhcn
 |-  ( ph -> ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) )
14 uniretop
 |-  RR = U. ( topGen ` ran (,) )
15 eqid
 |-  U. K = U. K
16 14 15 cnf
 |-  ( ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) -> ( RRHom ` R ) : RR --> U. K )
17 13 16 syl
 |-  ( ph -> ( RRHom ` R ) : RR --> U. K )
18 nrgngp
 |-  ( R e. NrmRing -> R e. NrmGrp )
19 ngpxms
 |-  ( R e. NrmGrp -> R e. *MetSp )
20 7 18 19 3syl
 |-  ( ph -> R e. *MetSp )
21 xmstps
 |-  ( R e. *MetSp -> R e. TopSp )
22 3 4 tpsuni
 |-  ( R e. TopSp -> B = U. K )
23 20 21 22 3syl
 |-  ( ph -> B = U. K )
24 23 feq3d
 |-  ( ph -> ( ( RRHom ` R ) : RR --> B <-> ( RRHom ` R ) : RR --> U. K ) )
25 17 24 mpbird
 |-  ( ph -> ( RRHom ` R ) : RR --> B )