| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrhf.d |
|- D = ( ( dist ` R ) |` ( B X. B ) ) |
| 2 |
|
rrhf.j |
|- J = ( topGen ` ran (,) ) |
| 3 |
|
rrhf.b |
|- B = ( Base ` R ) |
| 4 |
|
rrhf.k |
|- K = ( TopOpen ` R ) |
| 5 |
|
rrhf.z |
|- Z = ( ZMod ` R ) |
| 6 |
|
rrhf.1 |
|- ( ph -> R e. DivRing ) |
| 7 |
|
rrhf.2 |
|- ( ph -> R e. NrmRing ) |
| 8 |
|
rrhf.3 |
|- ( ph -> Z e. NrmMod ) |
| 9 |
|
rrhf.4 |
|- ( ph -> ( chr ` R ) = 0 ) |
| 10 |
|
rrhf.5 |
|- ( ph -> R e. CUnifSp ) |
| 11 |
|
rrhf.6 |
|- ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) ) |
| 12 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 13 |
1 12 3 4 5 6 7 8 9 10 11
|
rrhcn |
|- ( ph -> ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) ) |
| 14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 15 |
|
eqid |
|- U. K = U. K |
| 16 |
14 15
|
cnf |
|- ( ( RRHom ` R ) e. ( ( topGen ` ran (,) ) Cn K ) -> ( RRHom ` R ) : RR --> U. K ) |
| 17 |
13 16
|
syl |
|- ( ph -> ( RRHom ` R ) : RR --> U. K ) |
| 18 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
| 19 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
| 20 |
7 18 19
|
3syl |
|- ( ph -> R e. *MetSp ) |
| 21 |
|
xmstps |
|- ( R e. *MetSp -> R e. TopSp ) |
| 22 |
3 4
|
tpsuni |
|- ( R e. TopSp -> B = U. K ) |
| 23 |
20 21 22
|
3syl |
|- ( ph -> B = U. K ) |
| 24 |
23
|
feq3d |
|- ( ph -> ( ( RRHom ` R ) : RR --> B <-> ( RRHom ` R ) : RR --> U. K ) ) |
| 25 |
17 24
|
mpbird |
|- ( ph -> ( RRHom ` R ) : RR --> B ) |