Metamath Proof Explorer


Theorem rrhval

Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017)

Ref Expression
Hypotheses rrhval.1 𝐽 = ( topGen ‘ ran (,) )
rrhval.2 𝐾 = ( TopOpen ‘ 𝑅 )
Assertion rrhval ( 𝑅𝑉 → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 rrhval.1 𝐽 = ( topGen ‘ ran (,) )
2 rrhval.2 𝐾 = ( TopOpen ‘ 𝑅 )
3 elex ( 𝑅𝑉𝑅 ∈ V )
4 1 eqcomi ( topGen ‘ ran (,) ) = 𝐽
5 4 a1i ( 𝑟 = 𝑅 → ( topGen ‘ ran (,) ) = 𝐽 )
6 fveq2 ( 𝑟 = 𝑅 → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) )
7 6 2 eqtr4di ( 𝑟 = 𝑅 → ( TopOpen ‘ 𝑟 ) = 𝐾 )
8 5 7 oveq12d ( 𝑟 = 𝑅 → ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) = ( 𝐽 CnExt 𝐾 ) )
9 fveq2 ( 𝑟 = 𝑅 → ( ℚHom ‘ 𝑟 ) = ( ℚHom ‘ 𝑅 ) )
10 8 9 fveq12d ( 𝑟 = 𝑅 → ( ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) ‘ ( ℚHom ‘ 𝑟 ) ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )
11 df-rrh ℝHom = ( 𝑟 ∈ V ↦ ( ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) ‘ ( ℚHom ‘ 𝑟 ) ) )
12 fvex ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ∈ V
13 10 11 12 fvmpt ( 𝑅 ∈ V → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )
14 3 13 syl ( 𝑅𝑉 → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) )