Step |
Hyp |
Ref |
Expression |
1 |
|
rrhval.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
rrhval.2 |
⊢ 𝐾 = ( TopOpen ‘ 𝑅 ) |
3 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
4 |
1
|
eqcomi |
⊢ ( topGen ‘ ran (,) ) = 𝐽 |
5 |
4
|
a1i |
⊢ ( 𝑟 = 𝑅 → ( topGen ‘ ran (,) ) = 𝐽 ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( TopOpen ‘ 𝑟 ) = 𝐾 ) |
8 |
5 7
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) = ( 𝐽 CnExt 𝐾 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ℚHom ‘ 𝑟 ) = ( ℚHom ‘ 𝑅 ) ) |
10 |
8 9
|
fveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) ‘ ( ℚHom ‘ 𝑟 ) ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ) |
11 |
|
df-rrh |
⊢ ℝHom = ( 𝑟 ∈ V ↦ ( ( ( topGen ‘ ran (,) ) CnExt ( TopOpen ‘ 𝑟 ) ) ‘ ( ℚHom ‘ 𝑟 ) ) ) |
12 |
|
fvex |
⊢ ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ∈ V |
13 |
10 11 12
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ) |
14 |
3 13
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( ℝHom ‘ 𝑅 ) = ( ( 𝐽 CnExt 𝐾 ) ‘ ( ℚHom ‘ 𝑅 ) ) ) |