Metamath Proof Explorer


Theorem retopn

Description: The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion retopn ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
3 df-refld fld = ( ℂflds ℝ )
4 3 1 resstopn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( TopOpen ‘ ℝfld )
5 2 4 eqtri ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld )