Metamath Proof Explorer


Definition df-rtrclrec

Description: The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015)

Ref Expression
Assertion df-rtrclrec
|- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crtrcl
 |-  t*rec
1 vr
 |-  r
2 cvv
 |-  _V
3 vn
 |-  n
4 cn0
 |-  NN0
5 1 cv
 |-  r
6 crelexp
 |-  ^r
7 3 cv
 |-  n
8 5 7 6 co
 |-  ( r ^r n )
9 3 4 8 ciun
 |-  U_ n e. NN0 ( r ^r n )
10 1 2 9 cmpt
 |-  ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )
11 0 10 wceq
 |-  t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )