Description: The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rtrclrec | |- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crtrcl | |- t*rec |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vn | |- n |
|
| 4 | cn0 | |- NN0 |
|
| 5 | 1 | cv | |- r |
| 6 | crelexp | |- ^r |
|
| 7 | 3 | cv | |- n |
| 8 | 5 7 6 | co | |- ( r ^r n ) |
| 9 | 3 4 8 | ciun | |- U_ n e. NN0 ( r ^r n ) |
| 10 | 1 2 9 | cmpt | |- ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
| 11 | 0 10 | wceq | |- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |