Description: The reflexive, transitive closure of a relation constructed as the union of all finite exponentiations. (Contributed by Drahflow, 12-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rtrclrec | |- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crtrcl | |- t*rec |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | vn | |- n |
|
4 | cn0 | |- NN0 |
|
5 | 1 | cv | |- r |
6 | crelexp | |- ^r |
|
7 | 3 | cv | |- n |
8 | 5 7 6 | co | |- ( r ^r n ) |
9 | 3 4 8 | ciun | |- U_ n e. NN0 ( r ^r n ) |
10 | 1 2 9 | cmpt | |- ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
11 | 0 10 | wceq | |- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |