Step |
Hyp |
Ref |
Expression |
1 |
|
rtrclreclem1.1 |
|- ( ph -> R e. V ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
ssidd |
|- ( ph -> R C_ R ) |
4 |
1
|
relexp1d |
|- ( ph -> ( R ^r 1 ) = R ) |
5 |
3 4
|
sseqtrrd |
|- ( ph -> R C_ ( R ^r 1 ) ) |
6 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
7 |
6
|
sseq2d |
|- ( n = 1 -> ( R C_ ( R ^r n ) <-> R C_ ( R ^r 1 ) ) ) |
8 |
7
|
rspcev |
|- ( ( 1 e. NN0 /\ R C_ ( R ^r 1 ) ) -> E. n e. NN0 R C_ ( R ^r n ) ) |
9 |
2 5 8
|
sylancr |
|- ( ph -> E. n e. NN0 R C_ ( R ^r n ) ) |
10 |
|
ssiun |
|- ( E. n e. NN0 R C_ ( R ^r n ) -> R C_ U_ n e. NN0 ( R ^r n ) ) |
11 |
9 10
|
syl |
|- ( ph -> R C_ U_ n e. NN0 ( R ^r n ) ) |
12 |
|
eqidd |
|- ( ph -> ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ) |
13 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
14 |
13
|
iuneq2d |
|- ( r = R -> U_ n e. NN0 ( r ^r n ) = U_ n e. NN0 ( R ^r n ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ r = R ) -> U_ n e. NN0 ( r ^r n ) = U_ n e. NN0 ( R ^r n ) ) |
16 |
1
|
elexd |
|- ( ph -> R e. _V ) |
17 |
|
nn0ex |
|- NN0 e. _V |
18 |
|
ovex |
|- ( R ^r n ) e. _V |
19 |
17 18
|
iunex |
|- U_ n e. NN0 ( R ^r n ) e. _V |
20 |
19
|
a1i |
|- ( ph -> U_ n e. NN0 ( R ^r n ) e. _V ) |
21 |
12 15 16 20
|
fvmptd |
|- ( ph -> ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) = U_ n e. NN0 ( R ^r n ) ) |
22 |
11 21
|
sseqtrrd |
|- ( ph -> R C_ ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) |
23 |
|
df-rtrclrec |
|- t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
24 |
|
fveq1 |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( t*rec ` R ) = ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) |
25 |
24
|
sseq2d |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( R C_ ( t*rec ` R ) <-> R C_ ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) ) |
26 |
25
|
imbi2d |
|- ( t*rec = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) -> ( ( ph -> R C_ ( t*rec ` R ) ) <-> ( ph -> R C_ ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) ) ) |
27 |
23 26
|
ax-mp |
|- ( ( ph -> R C_ ( t*rec ` R ) ) <-> ( ph -> R C_ ( ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) ` R ) ) ) |
28 |
22 27
|
mpbir |
|- ( ph -> R C_ ( t*rec ` R ) ) |