Metamath Proof Explorer


Theorem rtrclreclem1

Description: The reflexive, transitive closure is indeed a closure. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis rtrclreclem1.1 φ R V
Assertion rtrclreclem1 φ R t*rec R

Proof

Step Hyp Ref Expression
1 rtrclreclem1.1 φ R V
2 1nn0 1 0
3 ssidd φ R R
4 1 relexp1d φ R r 1 = R
5 3 4 sseqtrrd φ R R r 1
6 oveq2 n = 1 R r n = R r 1
7 6 sseq2d n = 1 R R r n R R r 1
8 7 rspcev 1 0 R R r 1 n 0 R R r n
9 2 5 8 sylancr φ n 0 R R r n
10 ssiun n 0 R R r n R n 0 R r n
11 9 10 syl φ R n 0 R r n
12 eqidd φ r V n 0 r r n = r V n 0 r r n
13 oveq1 r = R r r n = R r n
14 13 iuneq2d r = R n 0 r r n = n 0 R r n
15 14 adantl φ r = R n 0 r r n = n 0 R r n
16 1 elexd φ R V
17 nn0ex 0 V
18 ovex R r n V
19 17 18 iunex n 0 R r n V
20 19 a1i φ n 0 R r n V
21 12 15 16 20 fvmptd φ r V n 0 r r n R = n 0 R r n
22 11 21 sseqtrrd φ R r V n 0 r r n R
23 df-rtrclrec t*rec = r V n 0 r r n
24 fveq1 t*rec = r V n 0 r r n t*rec R = r V n 0 r r n R
25 24 sseq2d t*rec = r V n 0 r r n R t*rec R R r V n 0 r r n R
26 25 imbi2d t*rec = r V n 0 r r n φ R t*rec R φ R r V n 0 r r n R
27 23 26 ax-mp φ R t*rec R φ R r V n 0 r r n R
28 22 27 mpbir φ R t*rec R