Metamath Proof Explorer


Theorem dfrtrclrec2

Description: If two elements are connected by a reflexive, transitive closure, then they are connected via n instances the relation, for some n . (Contributed by Drahflow, 12-Nov-2015) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypothesis dfrtrclrec2.1 φ Rel R
Assertion dfrtrclrec2 φ A t*rec R B n 0 A R r n B

Proof

Step Hyp Ref Expression
1 dfrtrclrec2.1 φ Rel R
2 simpr φ R V R V
3 nn0ex 0 V
4 ovex R r n V
5 3 4 iunex n 0 R r n V
6 oveq1 r = R r r n = R r n
7 6 iuneq2d r = R n 0 r r n = n 0 R r n
8 eqid r V n 0 r r n = r V n 0 r r n
9 7 8 fvmptg R V n 0 R r n V r V n 0 r r n R = n 0 R r n
10 2 5 9 sylancl φ R V r V n 0 r r n R = n 0 R r n
11 10 ex φ R V r V n 0 r r n R = n 0 R r n
12 iun0 n 0 =
13 12 a1i ¬ R V n 0 =
14 reldmrelexp Rel dom r
15 14 ovprc1 ¬ R V R r n =
16 15 iuneq2d ¬ R V n 0 R r n = n 0
17 fvprc ¬ R V r V n 0 r r n R =
18 13 16 17 3eqtr4rd ¬ R V r V n 0 r r n R = n 0 R r n
19 11 18 pm2.61d1 φ r V n 0 r r n R = n 0 R r n
20 breq r V n 0 r r n R = n 0 R r n A r V n 0 r r n R B A n 0 R r n B
21 eliun A B n 0 R r n n 0 A B R r n
22 21 a1i φ A B n 0 R r n n 0 A B R r n
23 df-br A n 0 R r n B A B n 0 R r n
24 df-br A R r n B A B R r n
25 24 rexbii n 0 A R r n B n 0 A B R r n
26 22 23 25 3bitr4g φ A n 0 R r n B n 0 A R r n B
27 20 26 sylan9bb r V n 0 r r n R = n 0 R r n φ A r V n 0 r r n R B n 0 A R r n B
28 19 27 mpancom φ A r V n 0 r r n R B n 0 A R r n B
29 df-rtrclrec t*rec = r V n 0 r r n
30 fveq1 t*rec = r V n 0 r r n t*rec R = r V n 0 r r n R
31 30 breqd t*rec = r V n 0 r r n A t*rec R B A r V n 0 r r n R B
32 31 bibi1d t*rec = r V n 0 r r n A t*rec R B n 0 A R r n B A r V n 0 r r n R B n 0 A R r n B
33 32 imbi2d t*rec = r V n 0 r r n φ A t*rec R B n 0 A R r n B φ A r V n 0 r r n R B n 0 A R r n B
34 29 33 ax-mp φ A t*rec R B n 0 A R r n B φ A r V n 0 r r n R B n 0 A R r n B
35 28 34 mpbir φ A t*rec R B n 0 A R r n B