Metamath Proof Explorer


Theorem rtrclreclem2

Description: The reflexive, transitive closure is indeed reflexive. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypotheses rtrclreclem2.1 φ Rel R
rtrclreclem2.2 φ R V
Assertion rtrclreclem2 φ I R t*rec R

Proof

Step Hyp Ref Expression
1 rtrclreclem2.1 φ Rel R
2 rtrclreclem2.2 φ R V
3 0nn0 0 0
4 ssid I R I R
5 1 2 relexp0d φ R r 0 = I R
6 4 5 sseqtrrid φ I R R r 0
7 oveq2 n = 0 R r n = R r 0
8 7 sseq2d n = 0 I R R r n I R R r 0
9 8 rspcev 0 0 I R R r 0 n 0 I R R r n
10 3 6 9 sylancr φ n 0 I R R r n
11 ssiun n 0 I R R r n I R n 0 R r n
12 10 11 syl φ I R n 0 R r n
13 2 elexd φ R V
14 nn0ex 0 V
15 ovex R r n V
16 14 15 iunex n 0 R r n V
17 oveq1 r = R r r n = R r n
18 17 iuneq2d r = R n 0 r r n = n 0 R r n
19 eqid r V n 0 r r n = r V n 0 r r n
20 18 19 fvmptg R V n 0 R r n V r V n 0 r r n R = n 0 R r n
21 13 16 20 sylancl φ r V n 0 r r n R = n 0 R r n
22 12 21 sseqtrrd φ I R r V n 0 r r n R
23 df-rtrclrec t*rec = r V n 0 r r n
24 fveq1 t*rec = r V n 0 r r n t*rec R = r V n 0 r r n R
25 24 sseq2d t*rec = r V n 0 r r n I R t*rec R I R r V n 0 r r n R
26 25 imbi2d t*rec = r V n 0 r r n φ I R t*rec R φ I R r V n 0 r r n R
27 23 26 ax-mp φ I R t*rec R φ I R r V n 0 r r n R
28 22 27 mpbir φ I R t*rec R