Step |
Hyp |
Ref |
Expression |
1 |
|
rtrclreclem2.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
2 |
|
rtrclreclem2.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
ssid |
⊢ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( I ↾ ∪ ∪ 𝑅 ) |
5 |
1 2
|
relexp0d |
⊢ ( 𝜑 → ( 𝑅 ↑𝑟 0 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
6 |
4 5
|
sseqtrrid |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 0 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 0 ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑛 = 0 → ( ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 𝑛 ) ↔ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 0 ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( 0 ∈ ℕ0 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 0 ) ) → ∃ 𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 𝑛 ) ) |
10 |
3 6 9
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 𝑛 ) ) |
11 |
|
ssiun |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( 𝑅 ↑𝑟 𝑛 ) → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
13 |
2
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
14 |
|
nn0ex |
⊢ ℕ0 ∈ V |
15 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
16 |
14 15
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
17 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
18 |
17
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
19 |
|
eqid |
⊢ ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
20 |
18 19
|
fvmptg |
⊢ ( ( 𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
21 |
13 16 20
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
22 |
12 21
|
sseqtrrd |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) |
23 |
|
df-rtrclrec |
⊢ t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
24 |
|
fveq1 |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( t*rec ‘ 𝑅 ) = ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) |
25 |
24
|
sseq2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ↔ ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) ) |
26 |
25
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) ↔ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) ) ) |
27 |
23 26
|
ax-mp |
⊢ ( ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) ↔ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) ) |
28 |
22 27
|
mpbir |
⊢ ( 𝜑 → ( I ↾ ∪ ∪ 𝑅 ) ⊆ ( t*rec ‘ 𝑅 ) ) |