Step |
Hyp |
Ref |
Expression |
1 |
|
dfrtrclrec2.1 |
⊢ ( 𝜑 → Rel 𝑅 ) |
2 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) |
3 |
|
nn0ex |
⊢ ℕ0 ∈ V |
4 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
5 |
3 4
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
6 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
7 |
6
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
8 |
|
eqid |
⊢ ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
9 |
7 8
|
fvmptg |
⊢ ( ( 𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∈ V ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
10 |
2 5 9
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∈ V → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) ) |
12 |
|
iun0 |
⊢ ∪ 𝑛 ∈ ℕ0 ∅ = ∅ |
13 |
12
|
a1i |
⊢ ( ¬ 𝑅 ∈ V → ∪ 𝑛 ∈ ℕ0 ∅ = ∅ ) |
14 |
|
reldmrelexp |
⊢ Rel dom ↑𝑟 |
15 |
14
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 ↑𝑟 𝑛 ) = ∅ ) |
16 |
15
|
iuneq2d |
⊢ ( ¬ 𝑅 ∈ V → ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ0 ∅ ) |
17 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∅ ) |
18 |
13 16 17
|
3eqtr4rd |
⊢ ( ¬ 𝑅 ∈ V → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
19 |
11 18
|
pm2.61d1 |
⊢ ( 𝜑 → ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
20 |
|
breq |
⊢ ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) → ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ 𝐴 ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) |
21 |
|
eliun |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↑𝑟 𝑛 ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↑𝑟 𝑛 ) ) ) |
23 |
|
df-br |
⊢ ( 𝐴 ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ) |
24 |
|
df-br |
⊢ ( 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↑𝑟 𝑛 ) ) |
25 |
24
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 ↑𝑟 𝑛 ) ) |
26 |
22 23 25
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) |
27 |
20 26
|
sylan9bb |
⊢ ( ( ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ0 ( 𝑅 ↑𝑟 𝑛 ) ∧ 𝜑 ) → ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) |
28 |
19 27
|
mpancom |
⊢ ( 𝜑 → ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) |
29 |
|
df-rtrclrec |
⊢ t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
30 |
|
fveq1 |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( t*rec ‘ 𝑅 ) = ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) ) |
31 |
30
|
breqd |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( 𝐴 ( t*rec ‘ 𝑅 ) 𝐵 ↔ 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ) ) |
32 |
31
|
bibi1d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( 𝐴 ( t*rec ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ↔ ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) ) |
33 |
32
|
imbi2d |
⊢ ( t*rec = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) → ( ( 𝜑 → ( 𝐴 ( t*rec ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) ↔ ( 𝜑 → ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) ) ) |
34 |
29 33
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝐴 ( t*rec ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) ↔ ( 𝜑 → ( 𝐴 ( ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) ) |
35 |
28 34
|
mpbir |
⊢ ( 𝜑 → ( 𝐴 ( t*rec ‘ 𝑅 ) 𝐵 ↔ ∃ 𝑛 ∈ ℕ0 𝐴 ( 𝑅 ↑𝑟 𝑛 ) 𝐵 ) ) |