| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csmat |  |-  subMat1 | 
						
							| 1 |  | vm |  |-  m | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vk |  |-  k | 
						
							| 4 |  | cn |  |-  NN | 
						
							| 5 |  | vl |  |-  l | 
						
							| 6 | 1 | cv |  |-  m | 
						
							| 7 |  | vi |  |-  i | 
						
							| 8 |  | vj |  |-  j | 
						
							| 9 | 7 | cv |  |-  i | 
						
							| 10 |  | clt |  |-  < | 
						
							| 11 | 3 | cv |  |-  k | 
						
							| 12 | 9 11 10 | wbr |  |-  i < k | 
						
							| 13 |  | caddc |  |-  + | 
						
							| 14 |  | c1 |  |-  1 | 
						
							| 15 | 9 14 13 | co |  |-  ( i + 1 ) | 
						
							| 16 | 12 9 15 | cif |  |-  if ( i < k , i , ( i + 1 ) ) | 
						
							| 17 | 8 | cv |  |-  j | 
						
							| 18 | 5 | cv |  |-  l | 
						
							| 19 | 17 18 10 | wbr |  |-  j < l | 
						
							| 20 | 17 14 13 | co |  |-  ( j + 1 ) | 
						
							| 21 | 19 17 20 | cif |  |-  if ( j < l , j , ( j + 1 ) ) | 
						
							| 22 | 16 21 | cop |  |-  <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. | 
						
							| 23 | 7 8 4 4 22 | cmpo |  |-  ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) | 
						
							| 24 | 6 23 | ccom |  |-  ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) | 
						
							| 25 | 3 5 4 4 24 | cmpo |  |-  ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 26 | 1 2 25 | cmpt |  |-  ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) ) | 
						
							| 27 | 0 26 | wceq |  |-  subMat1 = ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) ) |