Step |
Hyp |
Ref |
Expression |
0 |
|
csmat |
|- subMat1 |
1 |
|
vm |
|- m |
2 |
|
cvv |
|- _V |
3 |
|
vk |
|- k |
4 |
|
cn |
|- NN |
5 |
|
vl |
|- l |
6 |
1
|
cv |
|- m |
7 |
|
vi |
|- i |
8 |
|
vj |
|- j |
9 |
7
|
cv |
|- i |
10 |
|
clt |
|- < |
11 |
3
|
cv |
|- k |
12 |
9 11 10
|
wbr |
|- i < k |
13 |
|
caddc |
|- + |
14 |
|
c1 |
|- 1 |
15 |
9 14 13
|
co |
|- ( i + 1 ) |
16 |
12 9 15
|
cif |
|- if ( i < k , i , ( i + 1 ) ) |
17 |
8
|
cv |
|- j |
18 |
5
|
cv |
|- l |
19 |
17 18 10
|
wbr |
|- j < l |
20 |
17 14 13
|
co |
|- ( j + 1 ) |
21 |
19 17 20
|
cif |
|- if ( j < l , j , ( j + 1 ) ) |
22 |
16 21
|
cop |
|- <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. |
23 |
7 8 4 4 22
|
cmpo |
|- ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) |
24 |
6 23
|
ccom |
|- ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) |
25 |
3 5 4 4 24
|
cmpo |
|- ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) |
26 |
1 2 25
|
cmpt |
|- ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) ) |
27 |
0 26
|
wceq |
|- subMat1 = ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) ) |