Metamath Proof Explorer


Definition df-smat

Description: Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ( ( 1 ... M ) X. ( 1 ... N ) ) into a new index in ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) . A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma . (Contributed by Thierry Arnoux, 18-Aug-2020)

Ref Expression
Assertion df-smat
|- subMat1 = ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csmat
 |-  subMat1
1 vm
 |-  m
2 cvv
 |-  _V
3 vk
 |-  k
4 cn
 |-  NN
5 vl
 |-  l
6 1 cv
 |-  m
7 vi
 |-  i
8 vj
 |-  j
9 7 cv
 |-  i
10 clt
 |-  <
11 3 cv
 |-  k
12 9 11 10 wbr
 |-  i < k
13 caddc
 |-  +
14 c1
 |-  1
15 9 14 13 co
 |-  ( i + 1 )
16 12 9 15 cif
 |-  if ( i < k , i , ( i + 1 ) )
17 8 cv
 |-  j
18 5 cv
 |-  l
19 17 18 10 wbr
 |-  j < l
20 17 14 13 co
 |-  ( j + 1 )
21 19 17 20 cif
 |-  if ( j < l , j , ( j + 1 ) )
22 16 21 cop
 |-  <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >.
23 7 8 4 4 22 cmpo
 |-  ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. )
24 6 23 ccom
 |-  ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) )
25 3 5 4 4 24 cmpo
 |-  ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) )
26 1 2 25 cmpt
 |-  ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) )
27 0 26 wceq
 |-  subMat1 = ( m e. _V |-> ( k e. NN , l e. NN |-> ( m o. ( i e. NN , j e. NN |-> <. if ( i < k , i , ( i + 1 ) ) , if ( j < l , j , ( j + 1 ) ) >. ) ) ) )